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FOREWORD 

The Ninth Army Conference on Applied Mathematics and Computing was held at 
the Army High Performance Computing Research Center (AHPCRC), at the University of 
Minnesota, on 18 - 21 June 1991. The Sponsor of these annual meetings is the Army 
Mathematics Steering Committee (AMSC). Its members would like to thank Professor 
George Sell, Director of APHCRC, for serving as chairperson on local arrangements. He 
along with his staff personnel are to be commended for coordinating the many details 
needed to conduct this successful scientific meeting. 

The participants of the conference were treated to an Open House on 17 June, 
with tours of the facilities and a demonstration of the visualization and graphic facilities. 
The conference was very well attended with more than one hundred participants, 
including about forty scientists from the army laboratories. The technical program 
consisted of five special sessions scheduled on topics such as Smart Materials, Design 
of Real-time Control, Probabilistic Algorithms, and Large-scale Optimization. The 
conference featured more that forty contributed papers presented in nine technical 
sessions. In addition there were seven invited speakers, whose names are listed below 
together with the titles of their talks. 

SPEAKER AND AFFILIATION 

Professor Roger Brockett 
Hanrard University 
Cambridge, Massachetts 

TITLE OF ADDRESS 

Continuous Computations 

Professor Rudolf E. Kalman ldentificatlon of Systems 
University of Florida from Noisy Data - A New 
Gainesville, Florida Look at Statistics from 

the Real World 

Dr. Oliver Pironneau Implementation of the k- 
lnstitut National de Recherche Epsilon Turbulence Model 
Le Chesmay, France in Finite Element 

Compressible Navier- 
Stokes Solvers 

~'rofessor G. Kallianpur 
University of North Carolina 
Chapel Hill, North Carolina 

Stochastic Analysis 



Dr. Linda R. Pettold On the Numerical 
Lawrence Livermore National Solution of Constrained 
Laboratory Dynamical Systems 

livermore, California 

Professor A. Anrind Implicit Parallel 
Massachusetts Institute of programming' and 
Technology, Dataflow Architecture 

Cambridge, Massachussetts 

Dr. Gunter Stein Robust Control 
Honeywell Corporation 
Mlnneapolls, Minnesota 

The success of the conference was due to many individuals, the active and 
enthusiastic members of the audience, the chairpersons, and the large number of 
speakers. The members o f  the AMSC were pleased with the fact that most of the 
speakers were able to find time to prepare papers for the transactions. These research 
articles will enable many persons that were not able to attend the symposium to profit by 
these contributions to the scientific literature. 
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A Note on the Aspect Angle formed between the Convex Hull 
and  its Interior Points, in the Context oO 

the  Euclidean Traveling Salesman Problem 

T.M. Cronin 
CECOM Center tor Signals Warfare 

Warrenton VA 221864200 

Abslrnct. For the Euclidean traveling salesman problem WSP), it has long ken known that the relative 
order of the cities comprising the convex hull is pmswed within an optimal taw. It is thus natural during 
ETSP problem solving to utilize the hull as an initial tour. The main result of this papa is an extension 
of this concept, which proves that all interlor cities which form a disjoint, maximally obtuse angle with the 
cmvex hull may also be inserted into the baseline w (a dispinf maximally &me angle is one larger 
than any other obtuse angle which a city may form with the hull). Furthermore, any cities which form a 
disjoint, maximally obtuse angle with the resultant seucture may alsa be inserted. The only caveat is that 
each city inserted in this fashion must be periodically remted. to check that the maximally obtuse condition 
remains valid. The geometric rationale for the technique was developed in an earlier paper, in which it was 
shown that passing through each hull vertex is a hyperbola, the puqme of which is to discriminate the 
specific hull segment to be prukd when inserting a city into the tour. With regard to performawe,, the 
entire just descrilxd may be achieved in a preprocessing step with Cime complexity O[ n log n 1. 
where n is the number of cities behg processed. In the best case, if all interior cities form an obtuse angle 
with the hull, an instance of the problem is solved in O[ n log n 1 time. In the worst case, when no 
interior cities- farm an obwse angle with the hull, no improvement is obtained The technique is 
demonstrated for two dambasx with p v e n  certificates of optimality: the 127-(city University of Augsburg 
damet, and the 532city Bell btmdmies daraset For these examples, the partial tours Prpduced by the 
technique bear a marked smw:mal resemblance u, a complete optimal uwrr. 

Background: tbe Euclidean Traveling Salesman Problem. 

The Euclidean mveling salesman problem [ETSP] is a long-standing problem in optimizatl;on. 
having roots and primary development in the field of operaticHls research, with ancillary developments in the 
fields of compuhtional geometry and graph theory. As is the case with many obnm problems in 
mathematics. the ETSP may be swcinctly stated. Given a set of cities and the distances between each pair. 
h e  objective is to find the shortest tow which visits each city exactly once, except the stmt city. which is 
revisited at toufs end. A tour is simply a closed loop cmnecting al l  the cities; the formal mathematical 
name for a tour is a Hamiltmian cycle. One of the interesting facts d i s e o v d  early on is that a tour is not 
permimd to cross itself [Fl]. There are (n-l)! / 2 possible tours through n cities. which is a 
combinatorially prohibitive number of operations to perform by brute force. so it is therefore deskable to 
find an algorithm which arrives at a solution in polynomial time. The ETSP is a special case of the 
general traveling salesman problem, the former bearing the distinction that the m&cs involved ate 
Euclidean distances rather than arbih-ary costs or weights. 

To date, the Euclidean traveling salesman problem remains unsolved By "unsolved", it is meant 
that no one has developed a formal p f  of optimality for a polynomial-time algorithm guaranteed to 
prduce the s h m  tow. In the mid-seventies. it was proven that the ETSP is NP-hard [Gl]. This is a 
somewhat more f a v d e  complexity result than that obtained for the generat traveling salesman problem, 

- which belongs to the NP-complete class of problcms [G2]. Them have been hvo camps of rescarhers 
working on the Euclidean v d o n  of the problem, with the earliest computational work dating back to the 
end of the d wuld war L11. The fm camp has striven to produce an exact solution to the problem. 
and in doing so has pioneered advances in the field of linear progtamming, including such techniques as the 
simplex algaithm, branch-and-bound, and branch-andcut PI]. An exact approach favors precision at the 
cost of prformnce. The second a m p  of researchers has settled f a  an approximate w h ,  by r d n g  
to heuristics which @uce high quality solutions per unit of processing time. The principal heuristic 
techrriques are kopt  edge exchange (the most advanced of which is the iterated Lin-Kemighan), simulated 
annealing, genetic algorithms, elastic bands, and n e d  nets [Jl]. Generally, the approximate techniques 



develop a solution with more speed than exact approaches, at the cost of precision. However, even this 
gendity i s  moot, because m e  of the heuristic appmches ren- solutions wdem of magnitude faster 
than others. with only marginaUy infesior results. 

Verifying the Optimality of a Tour. 

To test a ETSP algorithm (whether it be exact or approximate) against large databases. it is 
necessary to have at hand some technique to verify an optimal solution in polynomial time. For city 
clmbam of size one hundred or less, it is possible to use a variant of branch-and-bound to check optimality 
in reasonable computer time [Jl]. However, when n becomes much larger than one hundred, carifying 
optimalily begins to consume unreasonable amounts of time. It is fur this reason that a technique based on 
computing a lower bound on optimal tour length has been developed [Hl]. This quantity, known as the 
Held-Karp lower bound, is computable in polynomial time, and empirical results indicate that it is 
cansistently within two percent of optimal [Jl]. Scientists in the field of openitions research have made 
good use of the bound. Rather than shve  for an optimal tour, researchers instead attempt to come within a 
mmnable n e i g h M  of the Held-- bwnd. 

The Discovery of the Non-linear Search Space for the ETSP. 

Despite over forty years of intense study by computer scientists and operations research analysts, 
the search space far the Euclidean traveling salesman problem remairced unspecified as of 1990 (i.e.. it was 
not known whether the mathematics of tour construction was linear, mn-linear, m transcendental in the 
number of cities). This lack of knowledge prompted the author to conduct exphnents during the winter of 
1990. in an attempt to characterize the space by leveraging the recently developed field of computarional 
geomemy upon the problem. In 1968, researchem at the Johns H o p h  University r e p d  upon a slight 
modification to a themem due to Barachet to show that an optimal tour must presave the order of the 
convex hull of cities - the shortest tour must contain these cities in the order in which they appear about 
the perimeter p1, B2]. This fact suggested that an experiment which inserts an arbitrary city into a hull 
could serve as a valuable testbed in which to discover the geomeok h u s  of equal hull pertrtrbatian. A 
perhuborion is a subtour which leads into the interior of the hull through two adjacent hull vertices, to 
capture cities which do not lie on the hull. In conjunction with a perturbation we introduce the elliptic 
distance between a segment and a point p, which is &fmed to be the sum of the distances from the 
endpoints of the segment to p, minus the length of the segment (Figure 1). 

When comparing a pernubed hull segment against another perturbed segment, one is actually 
comparing a confocal system of ellipses against another system, mdm a continuws spectrum of elliptic 
distances. The foci of the two systems of ellipses are mpctively the two endpoints of the hull segments 
being perlurbed. In Army research at the CECOM Center for Signals Warfare performed during the 1990 
fiscal year, it was discovered that the search space induced by the intersection of t.k two confocal systems of 
ellipses is in g e d  fourth Order (quartic), and in special cases hyperbolic. These facts become a w t  
when one realizes that reasoning about shortest tom is a pmxm which inherently involves the intersection 
of a pair of ellipses, the foci of which are defined by pairs of cities. Ellipse intersection is an operation 
which in the worst case produces a fourth-order equation (quartic). In the special case in which two ellipses 
share a focus, the locus is a semi-hyperbola The same non-linear behavior is manifested as more cities are 
added to the interior, which means that the general search space is quartic regardless of the number of cities 
added to the tour from within the hull. Dynamic programming immediately suggested itself as an approach 
to the problem which might provide the framework to keep track of the quartic and hyperbolic boundaries of 
equal tour pmub t ion  when a new city is added to the existing space: Armed with the new information 
about the non-linear search space, the author has proceeded to develop a dynamic programming algorithm to 
maintain incmental optimality when building shortest Euclidean tours. Since the algorithm is designed to 
pFobe inwards from the convex hull, it is apparent that efficient h d  genaating algorithms are required, as 
well as any algorithms which might exactly extend the hull in a preprocessing step, to produce an optimal 
baseline tout containing the cities on the hull and any cities which form a shallow angle with it. 



Figure 1. The equation tor elllptlc dlstanct, with a&dated geometry. The locus is In 
general a quartlc (fourth-order polynomial). 

A Brief History of Quartic Curves. 

Before pmeeding, it is perhaps instructive to pause for a sho~t history of the development of 
higher order plane curves. Most of the material in this section has been paraphrased by the author from a 
variety of historical sources. Of prticularly broad scope and insight is ref- m]. 

The existence of quartics, or fomh-order polynomials, has been known since antiquity. In 
attempting to trisect the angle or duplicate the cube, the ancient Greeks produced a body of mathematics 
(and sometimes built &vim) which resulted in the development of simple quartic curves. Examples 
include th Conchoid of Nicomedes and the Kampyle of Eudoxus. Nicornedes and Eudoxus were empirical 
scientists, overshalowed by the ingenious Archimedes, who devised sophisticated techniques to invent new 
quartics. The quartic cwes  disco- during this era were quite simple to visuatize, given the limited 
,tools available, and the Greeks obviously exploited symmetry to facilitate progress. That is probably why 
most of the quarks handed down to us in the twentieth century are even-valued functions. It is important 
to note that the introduction of odd-powered components s e m  to skew the quartics with asymmetric 
artifacts, and also i n d u c e s  singularities such as cusps and multiple points. 

Detailed knowledge about the existence of certain kinds of quartic curves did not provide a method 
to solve the general quartic equation (see below). It was not until the sixteenth century that a technique was 
discovered. The method followed immediately after an algorithm was swcessfully devised by Italian 
researchers to solve the general cubic equation. Ferrari's technique to solve the quartic (actually a specific 
quartic known as the biquadmic) equation appeared in Cardano's in 1545. Success in the 
algebraic solution of the cubic and quartic equations resulted in a centuries-long surge of mathematical 
research designed to solve by radicals the general equation of the nth degree. However, this activity was 
destined for failure, because in 1826 Abel pmved that an equation of degree five or higher is in general 
insoluble by algebraic means. 



In the interim, work had proceeded on cataloguing b t h  cubics and quartic curves. Sir Isaac 
Newton perfcrmed a remarkable study of cubics in the btes part of the seventeenth cenhmy, and 
in enumerating most of the species of third degree curves known to us today. This work was published in 
1704, in an appendix to his -. It is reprinted at W2]. Subsequent work by other researchers 
conbibuted a handful of other generic cubic forms to the laowledge store. 

Work in algebraic geometry, particularly that of Cayley and Plwket in the nineteenth century. 
added significantly to knowledge about the quartic& Plucker mcceded in pdicting tk n u m b  of 
singulanth and inflection points in an algebraic c w e  as a function of the degree of the curve. Salmon 
summarized and extended this work [Sl]. The task of generic c h i b r i o n  of the quartics continued into 
the twentieth cmtl~ry, but with diminished intensity. The last major work containing a detailed taxonomy 
of quartic curves was published by Hilton W]. A goal source for the empirical scientist is u ] ,  although 
this work is c ~ m e d  p d y  with even-valued quartic functions. Of recent vintage, particularly in the 
area of singuhities of cubics and quar&ics, is a work by Clemens [C2]. See also Kl] for some interesting 
results pertaining to self-invasion of cubics and quartics. It is hoped that interest in the higher order plane 
curves will be rekindled, to d d m s  not only the geometry of shortest tom in the plane, but the generic 
problem of non-linear optimization. 

Background: the Convex Hull. 

In the plane, the convex hull is the smallest bounding polygon which contains all the points of 
the problem domain. As iradicated above, the relative order of the cities contained on the hull is 7 e . d  in 
an optimal tour. It has been proven that the convex hull is optimally computed in O[n log h] time, where 
n is the number of points, and h is the n u m b  of cities which actually comprise the vertices of the hull 
W]. If one prefers to compute the entire nested hull decomposition, sometimes called the onion, it has 
ken shown [Cl] that the s m ~ ~ h u e  is optimally computable in O[n log nl time. 

The fact that the orientation of the hull is preserved in a an optimal tour suggests that the hull is a 
good baseline tour £rcnn which to add additional cities from the interim. This strategy has been adoptd by a 
number of researchers in the operations m h  community. An intuitively obvious procedure is to 
incrementally add to the hull those interior cities which essentially presewe the of the hull, in order 
to k t  &form the baseline tour. 

Shallow Angles as a Heuristic for the Euclidean Traveling Salesman Problem. 

In the 19709 it was speculated that a city which foms a maximal angle with a tour leg is a gwd 
candidate to be insened into the tour htween the two cities at the endpoints of the tour leg [S2]. This 
technique attempts to preserve the shape of the existing tour. Various versions of this concept have been 
implemented, although there has been no w d  to characterize the admissibility of the technique; i-e., 
whether w not such an i d o n  is optimal. One variant is the Golden-Stewart CCAO heuristic algorithm 
[G3] which is outlined below, with the maximal angle selection step highlighted. 

1. Form the convex hull of cities, to be used as the baseline subtour. 

2. (Insertion) For each city k not yet contained in the subtour, obtain the two 
adjacent cities ik and jk on the subtour such that dis(ik, k) + dis(jk, k) - 
dis(ik, jk) is minimized. 

3. (Selection) Select the city k* that maximizes the angle 
between edges {ik, k) and {k, jk} in the subtour and insert it 
between ik* and jk*. 

4. Repeat steps 2 and 3 until a Hamiltonian cycle is obtained. 

5. Apply the Or-apt procedure to the tour generated in steps 14, and iterate 
until no improvements are forthcoming. 



We will during the remainder of the papr attempt to characterize what it means for a city to form a 
shallow angle with an existing tour, in particular, in order to get a handle on the problm, we will restrict 
our study to only those cities that form an obtuse angle with the tour. 

Geometry of a City which forms an Obtuw Angle with the Current Tour. 

One result known in antiquity is that an angle inscrim in a semi-circle is a right angle. For our 
purposes, suppose that a circle is centered at the midpoint of a tour leg, and that the cities at the endpoints 
Mme a diameter of the circle. Now, with the exception of the a d p h t s  of the tour leg. any cities lying on 
the circle form a right angle with the two cities lying at the endpoints of the diameter. Consider the disk 
bounded by the circle. It def" an obtuse condition on the tour leg, since any pint properly contained 
within the disk must form an obtuse angle with the two c i h  at the leg endpoints. Conversely, any cities 
lying properIy outside the disk form an acute angle with the tour leg. 

Any cities introduced 
inside the circle form an 

C1 9 obtuse angle with tour 
leg (diameter) q 02 

[e-w I 
P 

Flgurc 2. The Obtust Condltlm Deflned on a Tour Leg 

We formalize as follows. Let p l  and p;! be the coordinates of the cities which lie at the endpoints 
of a specific tour leg (note: since a circle is rotationally invarian4 we do not bother to rotate and translate 
the tour leg to an axis). 

m= m r d p ( ~ . a )  = (h.k) 
r = ww,) 
Right - angle condition: 

( ~ - h ) ~  +(y-k12 =rZ 

Obtlrre condition: 

(x-h)' + ( ~ - k ) ~  c r 2  

Acute condition: 

( ~ - h ) ~  + ( ~ - k ) ~  > r2 

-fore, if a newly introduced city's coordinates lie within the semi-disk abut an existing tour leg, the 
city forms an obtuse angle with the current tour. What remains to be shown is under what criteria the 
obtuse angle condition is suffxient to insert a new city optimally into tk tour. Obviously, for all other 
segments in the tour, the discriminating quartic must not pass within the obtuse region of the segment 
under " * n. 



The Effect of Tour Leg Translation upon the Quartic Locus of the ETSP. 

To gauge the effect upon the quartic locus of the relative orientation of one tour leg's obtuse region 
with respect to another, a set of expiments was designed to monitor the transformations undergone by the 
quartic space when one tour leg is held fued, while the other is systematically eanslated to a new position 
in the plane. A tour leg is &fined to be a pair of cities which are currently connected. In the experiments, 
without la&s of generality, the longer of two tour legs is assumed to lie upon the x-axis, with the shorter 
initially lying across it, at an oblique angle. The shorter segment is then translated in the positive wdinate 
direction until it lies totally beyond the circumscribing circle of the longer segment During this process, 
the question is posed regarding which of the two segmenrs is less costly to perturb when introducing an 
arbitrary city into the space. Cost in this instance is the elliptic distance, which is & f d  to be the sum of 
the distances from the endpoints of a segment to the new city, minus the length of the segment During 
the translation process, the quartic locus of equal perturbation is obmed at the extremd positions of both 
the shorter tour leg and its obtuse region. An extremal position f a  the shorter leg is defined to be the 
c o l l M t y  of one of its endpoints with the longer segment. An exttemal position fw its obtuse region is 
defined to be a tangency, e i b r  internal or extetnal, with the obtuse region of the longer segment 

Flgure 3. Tour leg translation In the positlve ordlnate dlrectlon. 

We know from previous work that the locus of equal perturbtion is fourth& [C3]; the current 
effort ammpts to specify what type of quartic arises for different positions of the segments. There are three 
situations to consider. First, the obtuse region of the shorter leg may be totally contained within the 
obtuse region of the longer leg. the point of internal tangency being the extreme. Secondly, the obtuse 
regions may partially oveslap, with extremes at the internal and external tangencies.. Finally, the obtuse 
regions may be disjoint. In the experiments, it was demonstrated that the genus of the quartic curve 
changes from two to one at the instant when the shortex segment becomes tangent to the longer, and from 
one to zero when the circumscribing circle about the shortex segment becomes internally tangent to the 
circumsribing circle of the longer. The empirical evidence for these results is contained in Appendix A. In 
the majority of the experiments, the direction of translation was in the positive ordinate direction. The 
exceptions are at graphics A1@-A12. A summary of the experimental results appears below. 

Simtion 1. Segment CD's obrrrre region B properly contained within that of segment AB. 

Case 1.1. Tour leg CD lies properly across tour leg AB . 
Tk locus is of genus two and its shape approximates a figure eight The lobes of the figure eight 

are proportioned to the relative sizes of the pieces of tour leg CD defined by the crossing. For p t i c a l  
purposes, it has been shown that this condition cannot occur in an optimal tour PI]. However, for the 
sake of completeness, it is included hm. 

Case 12. CD is properly tangent to AB (C collinear with AB; C=A and C=B). 



The quartic locus is p~ar-shaped, with the point of the pear at C. This extremal condition 
c m e q m d s  to one lobe of the figure eight being lapped off, and changes the genus of the locus from two to 
one. 

Case 13. CD lies properly within one of the semicircles which saaddle leg AB. 
If CD is MSWX AB than AB's circle of obtusemss, the locus is pear-shaped. As CD nears the 

obtuse &le abut segment AB, the cusp of the pear becomes smoother, and the locus resembles a quartic 
ellipsoid. The major axis of the ellipsoid approaches the medial axis of the tour legs as a limiting 
condition. 

Situation 2. Segment CD's obtuse regwn partially overlops that of segment M. 

Case 2 1. Tour leg CD lies pmperly across tour leg AB. 
If CD lies within the obtuse circle of AB, then the description at case 1.1 applies. However, if 

CD extends outside the obtuse circle of AB, then one of the l o b  of the figure eight opens up, and the 
locus is similar to the loop branch of Durer's cowhoid. The remaining lobe e i t k  envelopes the sectian of 
CD which does not protrude bgrond AB, or the section of AB which is nearest CD. 

Case 2 2 a  CD is properly tangent to AB (C collimar with AB; C f  A and C f  B). 
The quartic locus is a parabloid, with a cusp at the pint  where C touches AB. 

Case 2.2b. CD is im-ly tangent to AB (C collirrear with AB; 6 A ) .  Without loss of geaerality, we 
assume C=A. The quartic locus degenerates to a hyperbda, as p e n  at [a]. 
Case 2.3. CD lies properly within one of the semicircles which encompass leg AB. 

The quartic locus is a paraboloid, with a spectrum of behaviors. If CD is roughly parallel to AB. 
the locus is similar to the bullet nose: however, if one of the endpints of CD is pointed at AB, the locus 
is cusped or sharply lobed about the endpoint. The cusp or lobe smooths out as CD's obtuse region moves 
away from segment AB proper and appmches the point of internal tangency with that of AB. 

Situation 3. Segment CD's obtme regwn k disjoint f b m  t h ~ t  of segment AB. 

The locus ranges in shape from a quartic patabloid when CD's obtuse region is relatively near that 
of AB, to a quartic hypboloid when the regions become remote. The point at which the change from 
pamboloid to hyperboloid occurs as yet remains unspecified. As the obtuse regions become increasingly 
remote, the locus resembles a branch of the classic quartic known as the Kampyle of Eudoxus, which may 
crudely be described as a hyperbola with inflection points. 

The third situation is the one which we will ultimately exploit in the p n p m s h g  algorithm. 
We require to laow unda what conditions the quartic locus is disjoint from the obtuse region of the longer 
tour leg, which will be developed in a v t e  section Wow. 

The Lisp Function Utilized to Plot the Quartic Locus during the Tour Leg Translation 
Experiments. 

The tour kg badation experiments were conducted on a Macintosh IIfx workstation with 8MB of 
RAM memory, using a version of the Lisp language called Macintosh Allegro Lisp. Since this version of 
Lisp does not yet support bitmap operations, the author developed a Lisp function to dump the contents of 
a window KI a global variabk, which in turn is passed to a Laserwriter printer netted to the computer. The 
function which displays the locus is called "plot-loci"; a hardcopy listing of the source code appears below. 
The logic k essentially a double do loop: the outer loop throttles both the position of the tour leg and the 
program termination condition, while the inner controls the locus plot for a specified position of the shorter 
tour leg. Some of the quartic ellipsoids were of such extensive area that only a small portion of them could 
be displayed on the screen. It is conceivable for one of these ellipsoids to be infinitely long just prim to 
reaching the pint where the smaller obtuse region kames internally tangent to that of tk longer, when 
the genus of the locus is altered from one to zero, and the locus opens into the shape of a pab lq id .  



(defun plot-loci () 
(prog ( i  j p l  p2 p3 pQ perl ptr2 p mp diff 8-ser mar newp lasQ 

twoback n a t o h t p  anchor (cnt 0) (PQISCM 0) l m g  botwag ml m2 m) 
(putprop (cadr citydata) 'xy (com (car (getprop (cadr city&) 'q)) 

(c& ( ~ W P  (car cirydata) 'FY)))) 
(display-eitiesll c i t y h a )  
(4 

(setq p l  (gdprop (car cirydaa) 'q)) 
(sets ~2 (gerprv ( c d  c@data) 'xy)) 
o r 3 c r l q  (setq papscnt ( I  + pmscnt)) 
(seq p3 (gewop (cad& c i r y h )  'v)) 
(se4 pd (&&prop ( c d  c i r y b )  'a)) 
(fetq m (- p3 ~ 4 ) )  

f=4 i ( r d  (cat 4)) 
(print i )  
(seq i 0) 
(setq nup 1000000) 
(setq cnr 0) 
(setq borhfrag nil) 
(set4 leflflog 4 

jrDsp (=tq j (1 + j)) 
( c o d  ((= j 60Wgo id ) ) )  
(setq perl (per-points (list p l  (cow i j )  p2))) 
(setq per2 (pw-points (list p3 (cons i j )  PQ))) 
(seq dif(obs (- per1 pcr2))) 
(cod ((< diff maxxsetq ma* din 
(se4 ( e m  i j)))) 
(go iloop) 

init 
(cond ((> nuxx .MXsetq i (1 + i)Hprinl insetq j OXgo jtoop))) 
(serq nlp (&-point (car auchor)(cdr anchor))) 
(mk trw (move-to mp))(ask tsw (line-to w p ) )  
(se4 P =b) 

onchor (serq cnt (1 + cnt)) 
; Function 8-set finds the eight digital ncighhrs of coordinate p 
(setq 8-set (8-set p)) 
(setq 8-sct (&lee lastp 8-set :test #'equal)) 
(setq 8-set (delete nexttolmtp 8-set : tat  #'equal)) 
(setq 8-sa (delete twobock 8-m :t& C'equol)) 
(setq mat 1000000) 
; Function per-points computes the perturhtbn length of three points, with the new point in 
the middle 
( W c  8-set (+tion (1- (x) 
(setq perl (per-points (list p l  x p2))) 
(setq per2 (per-points (list p3 x p4))) 
(setq difJ(ah (- perl per2))) 
(cond ((c diff ma)(setq mar dmseiq navp x))) 
))) 
(eond ((eq cnt IMsetq newp (c& &set))) 

(Wag (s@ M P  (c& (reverse 8-4)) 
(sets l*g nilXsetq botlrflag 1))) 

(ask tsw (move-to ( d - p o i n t  (car newpxcdr newp)))) 
(ask tsw (line-to (&-point (car newp)(cdr newp)))) 
bypass (setq twoback nexttdmtp) 
(setq nmtdastp lastp) 

l* P) 
(setq P 



( c o d  ((eq passcnt 2O)(&lMreCwn)) 
((equol p ~ckw)(setq  p d X s e 4  m k o r  nilxwtq rwobock nil) 

(scrg nex#okip nil)(setq lastp nil)& 2x80 oucetloop)) 
((z (cw P) mx3w Wog tX&q P &Xsetq l d P  nil) 

(setq &k nilxserq ndtdaap nil)(go Mchw)) 
ffz (cm P )  dOOX=tq wog txsetq p -wwq L ~ P  nil) 
(setq rwoback nil#seq mdtdq nit)(go ~ e h ) )  

((< (cdr P) O M c d  (&Wg (setq P nilMsaq 1- nil) 
(w anchor d x s d q  twoback nil) 

(sag d t d a p t p  nilxtr 20Xgo outerimp)) 
(t (saq w a g  tXscrq P =w 

(-4 w dX=W * nil) 
I- -* niMg0 mhor)))) 

((< p) o x c d  (Mm8 (saq P nilxsdq I&P nil) 
(Wq mhor nil)(Wq h w h c k  nil) 

(sag ndtdrrstp nil)(tr 2OXgo outerloop)) 
(t (sw lefYIog rXsetq P ah) 

(Jw laffp nil) 
(=w -k nil) 
(-q - nil) 

(w -ha))))) 

The Coordinate Data for the Tour Leg Translation Experiments. 

Table 1 below recmds the positions of the four coordinates representing the endpoints of the two 
tour lags utilized in the experiments. The Allegro Lisp envircmment employs a windowing system in 
which the u p  left ctmer of a window is the origin, so a transhion in what is conventionally considered 
to be the positive ordhate direction pduces an ordinate of lesser magnitude. 

Graphics A1-A9 portray experiments in which the sharter tour leg is manslated in the positive 
ordinate direction, in a series of itaated steps which vary in size. Graphics A10 through A12 involve a 
translation along the longer tour leg. in either the positive or negative direction. In selecting the 
ccmclhtes, an attempt was made to develop a dataset representative of a variety of quartic behaviors. 
although the selection plocess was not exhaustive. 

Table 1. Inltlal and Termlnal PositIon~ of the Tour Leg Tran~latlon Clty Data. 

Gr@ 

A1 
A2 
A3 
A4 
A5 
A6 
A7 
A8 

A9a-i 
A10 

Positibn of 
CI 

. (186,490) 
(150,547) 
(206,579) 
(136,536) 
(256,562) 
(175.521) 
(140,512) 
undoc. 
undoc. 
( 6 . 379 ) 

Position of 
c2 

(520,490) 
(5 10,547) 
(408,579) 
(506, 536) 
(328,562) 
(507,521) 
(482,512) 
undoc. 
&. 

(208,379) 
(457.477) A1 1 (182,477) 

A12ac 1 (287,449) 

C3S start 

(326,485) 
(302,546) 
(290,592) 

. (275,563) 
(276,571) 
(238,510) 
(292.512) 

unck. 
undoc. 

( 160 , 379 1 
, (209,477) 

(521,449) 1 (298,470) 

C4's stiwt 

(340,477) 
. (332,510) 

(326,567) 
(349,440) 
(3 18,556) 
(453.495) 
(233,401) 
undoc. 
undoc. 

(1%.354) 
(263,389) 
(322,412) 

C3's finish 

(326.335) 
(302,3 12) 
(290,321 

(275,323) 
(276,31) 

(238.310) 
(292,450) 

Imdoc. 
undoc. 

( 167,379 ) 
(1 59,477) 
(300,270) 

C4S finish 

(340,327) 
(332,276) 
(326,71 

(349,200) 
(318. 16) 
(453,295) 

. (233,349) 
undoc. 
&. 

(203,354) 
(213,389) 

Stepsize 

5 
2 
20 
30 
20 
20 
1 

undoc. 
undoc. 

1 
-5 

(324,412) - 1 - 



Explanation of tbe Graphics contained in Appendix A. 

Appendix A contains a series of computer graphics which visually depict the effect of manslating a 
shorier tour leg while holding a longer one fued, while at the same time requesting a plot of the 
corresponding quartic locus of equal tour leg perturbation. Recall that a perturbtion is a synrhetic 
operation which produces two new tour edges by constmting segments from the endpoints of a tour leg to 
a new city, while at the same time discarding the edge currently defined by the tow leg. The elliptic length 
of the perturbation is the sum of the lengths of the two new edges, minus the length of the old edge. The 
locus of equal tour leg perhlrbation is the set of points where the elliptic lengths are the same for two tour 
legs. In the graphics, the longer tom leg is oriented along the x-axis, and the shm one is systematically 
tmndated to some other position in the plane. 

Although upon first inspection it may appear that the eanslation process is non-robust because the 
genus of the quartic locus may suddenly change during a translation of a single pixel in a specifs direction, 
it should be pointed out that the translation process is limited by the grain size (screen resolution) of the 
monitor. If one is permitted to zoom in on the gmphics to view the locus at a finer resolution, there is 
actually an infhtely long specfnun of behavior between shifts in the genus of the locus. The zooming 
operation can be effectively achieved by simply scaling up the coordinates of the four cities by a nominal 
factor, and redisplaying the data (or a portion of it) in the window. 

In many of the graphics contained in Appendix A, the iterated positions of the obtuse region for 
tk shorter tour leg are seen as a series of circles plotted in what appears to be a cylindrical formation. This 
infomulion tends to occlude the quartic locus in some instances, but it was decided to include it so that the 
regdet might get a more intuitive appreciation of the psition of the locus as a function of the location of 
the smaller obtuse region. 

Graphic AI. This experiment aanslates a smaller tour leg up and away from a relatively large one. The 
locus is sea to evolve from a small pirifom through a family of ever-larger quartic ellipsoids, culminating 
in an open parahloid beyond the point at which the smaller obtuse region becomes internally tangent to 
that of the larger. 

Graphic A2. The smaller tow leg is longer than in the fvst experimenf which pmluces a noticeably wider 
funnel of quartic ellipsoids during the translation process. 

Graphic A3. The shorn tour leg is translated well beyond the obtuse @on of the longer, to highlight the 
quartic parahloids and hypertoloids which appear when the tour legs become remote. In the initial 
position, the tour legs cross, which produces a locus in the form of a figure eight. 

Graphic A4. In this case, the shorn tour leg is approximately equal to the length of the radius of the 
obtuse region about the longer leg. The locus demonsaates a typical change in genus pmhced by the 
figure eight evolving into the phiform, followed by a smoother ellipsoid (the cusp of the piriform is 
modulated), and f d y  by a genus m family of paraboloids. 

Graphic M. The shorter tour leg is now longer than the radius of the longer leg, and also more parallel to 
the longer leg. The locus consequently becomes flattened, with a bulletnose quartic behavior predominating 
over the pirifonn. 

Grophic A6. A more &tailed l d  at the bulletnose behavior exhibited by graphic G5, with an emphasis on 
the change from genus one to genus zen, as the point of internal tangency is encountered during translation. 

Graphic A7, A somewhat &tailed lmk at the pitiform behavior of the locus as a shorter tour leg's obtuse 
region is mslated from internal tangency with that of the longer, to a position slightly beyond the obtuse 
circle of the longer. 

Graphic A8. A remote view of the quartic ellipsoids encountered in an undocumented translation 
experiment 



Graphics A9a-i. For the sake of clarity, each locus is plotted to its own sheet of paper as a tour leg is 
wnslated from a crossing with the longer segment (eight figure locus) through tangency with the longer 
segment (pirifurm locus) to a pi t ion well beyond the circumscribing circle of the longer leg (locus has 
evolved into a quanic hyperboloid). 

Graphic AIO. We change the direction of eanslation by laying one endpoint of the slmrkr leg upon the 
longer leg, and then walking the shorter leg to the right (positive abscissa direction). The phiform bends 
radically in the direction of translation lmtil it opens at the point of internal tangency. 

Graphic All. This time a tour leg is started inside the larger obtuse region, with one endpoint upon the 
longer leg, and then walked to the left (negative abscissa direction) until it passes outside. At the point 
when the endpoint coincides with that of the longer, the locus is the familiar semxl d e w  h-la In a 
neightaxhood about this point, the locus appears to be a serpentine (cubic). 

Gruphics Al2a-c. This expmhmt dramarically illumates the effect of hanslating a tour leg by one pixel 
(screen cmrdhte), to radially alter the appearance of the quartic bcus. The shWRr tour leg is walked from 
left to right in this case, and the tour legs cross. A foliurn-shaped quartic results at the original @tion of 
the tour leg, with a lobe wrapped around an endpoint of the Ionger leg. Tlw second position of the leg 
continues to produce a lobe about the same endpoint However, the vay next tmshion of one pixel 
causes the lob of the quartic fdiurn to move over and wrap about an endpoint of the shorter segment It 
should be emphasized that if one were affmkd the luxury of an idmitely high resdudon graphics screen. 
the= would be an infinite number of quartic behaviors displayed beween the loh shifts. Machine 
imprecisitm can - processes to appear non-robust, simply beawe in a discreoe process one is not 
permitted to se.le~:t a small enough input scale to m y  a continuous phenomenon. 

Table 2. EfTect of Tour Leg Translation on the Quartlc Search Space of the Euclidean 
Traveling Salesman Problem 

11 

- 

Position of Tour Leg 
CD with respect to 

Leg AB 

Leg CD pmpetly crosses 
leg AB; CD's obtuse 

region inside that of AB 

Leg CD properly cmses 
leg A B  CD's obtuse 

region intersects that of 
AB 

CD's obtuse region 
properly internal to that of 
AB; CD properly tangent 

DAB 
CD's obtuse region 

properly internal to that of 
m, no crossing 

CD's obtuse region 
intersects that of AB; no 

-J3 
AB and CD share endpoint 

CD outside AB's circle 

Shape of Quartic 
L o c u ~  for ETSP 

Figure eight 

Degenemte figure eight 
(one lobe open) 

Pear-- with cusp 

Pear-- neat AB; 
Qua& ellipsoid w a ~  AB's 

circle 
QuamcParaboloid 

H-la 

Quartic H-oid 

Genus of Quartic 
Locus 

2 

1 

1 

1 

0 

0 

0 

Ideal Example from 
Antiquity 

Eight curve 
x4 = - a%* 

Durer's Conchoid 
witha>b 

Pitiform 
a4y2 = 19x3 (2a - x) 

Piriform / Ellipsoid 
a4y2 = $x3 (b - x) 

a4y2 = b2x4 
Bullet nose 

a2/x2 - b2lY2 = 1 

H m l a  
x2/a2 - y2~b2 = 1 

Kampyle of Eudoxus 
x4 = 2x2 + a 3 2  



Summary of the EfYect of Tour Leg Translation Upon the Quartic Locus. 

When arbitrating which of two tour legs to perturb when inserting a new city into an existing 
tour, one can predict the position of the quartic locus, based u p  the relative positicms of the circles of 
obtusems drawn about each W leg. The predicted quartic behavh is s u m m u i d  at Table 2. If the two 
obtuse regions are disjoint, then one may invoke a simple check to verify that the disctimindng quartic 
daes not intersect the larger obtuse region, and m& the indicated hertion, when reasoning about the 
Euclidean Traveling Salesman Problem. If the smaller obtuse region is properly contained within a 
semicircular region about the larger, then we how that the locus is of genus one. 

Some Practical Considerations Concerning the Quartic Locus. 

Some of the quartic loci obsaved in the tour leg translation expiments are not encountered in 
practice, when actually constructing shartest tours. For example, it has been shown that tour legs cannot 
cross in an optimal tour Fl], so we need not be concerned with the eightcwe a the folium whcn 
building s h m m t  tours. Also, the pure form of the pirifcmn which occm when a tour leg endpoint is 
collinear with anoW tour leg cannot happen, since that endpoint would in fact be optimally absorbed into 
the other tour leg. In general, it may be said that the more extreme forms of q d c s  (those which are of 
higher genus, or contain cusps, or multiple singularities) need wt be mated when m w t i n g  optimal 
tours. since there exists some other tour connection which is optimal, with a simpler quartic available to 
arbieate the decision. 

The Intersection of the Quartic Locus with the Circle of Obtuseness of a Tour Leg. 

To exploit the condition specifying that the quartic locus of equal tour leg perhubation does not 
intersect the obtuse region about a particular tour leg, we are ~~ to f d  the values of x and y f a  the 
limiting case in which tk locus is tangent to the circle which circumscribes the tour kg. Any interior 
points which lie between the quartic and tour leg (within the obtuse region) are then safe to hen into the 
tour. Conversely, any points lying beyond the locus (i.e., on the other leg's side) cannot be insened into 
the candidate tour leg. The point of tangency lies upon both the quartic locus and the circumscribing circle 
of the tour leg under consideration. If a q u d c  locus does not intersect the obtuse region of a tour leg as in 
the figure below, it is safe to insert any interior cities which happen to fall within the obtuse region. One 
must ensure that the quartic locus does not encroach into the circle of obtuseness, or some other segment 
would then be the source of optimal perluhtion for cities bounded below by the quartic and above by the 
obtuse region. 

~ i g u t e  4. Maximal obtuseness. 



Simultaneous Solution of the Quartic Locus and the Obtuse Circle about a Tour Leg 

The quartic locus: 

.I-+ J--2h= 

The obtuse condition: 

x2 + y 2  = h2 

j y 2 = h 2 - X 2  

Substitution of [3a] in [la] produces: 

d2h(h+x)d- -2h= 

We allow a parameter z torepresent the quantity on the left side of [5a]: 

Then r + 2 h = J m ; j +  4- 

Also, by squaring both sides of equation [gal, we obtain: 

Therefore, in terms of q the parametric equations of the locus are: 



But x is real 

a 16h4 - 16h2z2 - 8hz3 - z b  0 

e 16h4 I 16h2z2 + 8hz3 + z4 

16h4 5 z2(16h2 + 8hz + z2)  

e the LHS is positive; z # 0. 

But 16h2 + 8hz + z2 = 0 

B (z+4h12 = O  
e z = 4 h  

Therefore the LHS of [l Sa] is positive - z > 4 h  
:. There are no real solutions to [13a] 

z < - l h .  

If the left side of equation [la] is plotted as a paramem in three dimensions, with both x and y ranging 
within the interval [-lo, 10). while fixing h at 1, then the graphic depicted at Figure 5 results. This illustration 
was computed using the Plot3D function available with the software tool Mathematics 20, copyrighted by 
Wolfram Research, Inc. for the Apple Macintosh family of computers. 

Figure 5. A Parametric Plot of the Left Side of Equation [la], with h equal to 1. 



Now turning to the right side of [Sa], we solve for the same real parameter z: 

Squanuanng both sides of [24a] produces: 

z2+2zJ(a-c)'+(b-d)' +a2 +b2+c2+d2-2oc-2bd= 

- 2 a - 2 c x - 2 b y - 2 b y + a 2 + b 2 + c 2 + d 2 + 2 h 2 +  

24-2M: - 2by + a' + b2 + hz)(-2a - 2dy + c2 + d2 + h2) 

If we square both sides once again we obtain: 

which simplifies to: 

z2+2r~(a-c )2+(b-d) z  +2ax+2cx+2by+2&-2ac-2bd+2h2 = 

4acx2 + 4- - 2ac2x - 2ad2x - 2ah2x 

+4z24(a - c)' + (b - d)' + 8axzd(a - c)' + (b - d)' + 8cxq/(a - c)' + (b - dl2 

2 

The Set of Non-linear Constraints to Assure that the Obtuse Condition is Sufficient 
to Guarantee Optimality. 

+4bcxy + 4bdy2 - 2bcZy - 2 b d 2 ~  - 2bh2y 

-2a2a - 2a2dy + a2c2 + a2d2 + a2h2 

-2b2cx - 2b2dy + b2c2 + b2d2 + b2d 

We have developed the ndiments of a prepmasing algorithm, since we know under what 
geometric mnditions it is safe to insert a city into a uiur if it happens to form an obtuse angle with some 
existing tour leg. The constraints which must be included in the formal design specification for the 
algorithm are stated below: 

-2chZx - 2dhzy + c2 h2 + d2h2 + h4 



Maximally obncre: ( X  - h)2 + (Y - k)2 < 5'; 
Left - hyperbolic conformable: x > H,; 
Right - hyperbolic conformable: x < H,; 
Semi - positive: y 20; 

ETSP quam'c co@onnable: y<@;(x,y), ai ~ { i P ~ ( x , y ) ) ;  i = l ,  ... k. 

The algoIithm may then be outlined as follows: 

. 
0. Begin with a baseline tour consisting of the convex hull. 

1. Sort all interior cities based on the maximal angle formed with the 
(extended) hull, and form an open list. If there are no interim cities or 
obtuse angles, retum the extended hull structure. 

2. Select the city at the head of the open list as a candidate to be 
inserted. If the open list is null go to step 1. 

3. If the candidate's obtuse region is disjoint from that of all 
non-neighboring tour legs, insert the candidate; otherwise use the 
quartic locus for the decision. 

4. Recheck all previously inserted cities for obtuseness and reorder if 
necessary, and go to step 2. 

Results for two Certified Databases. 

The new prepmessing algorithm has been applied to a variety of small to moderate size databases, 
the largest being the 127-city University of Augsburg dataset CRI], and the 532city Bell Lahatories 
dataset Pl]. Both of these darasets have been emfied to optimality by means of a version of the bmch- 
and-cut algorithm. For the 127city database. 35 cities are prepmessed by the new algorithm, and for the 
532-city database, 151 cities are preprocessed. For each of these two instances, over a quarter of the 
rhabase is successfully preprocessed into a tour which is optimal for the cities it contains. Graphics of the 
complete optimal tours for the datasets, and for the partial optimal tom produced by the preprocessing 
algorithm are contained in Appendix B. An explanation of the graphics is as follows: 

Grophic BI .  The locations of 127 beer gardens in the city of Augsbrg, Germany. 

Graphic B2. The best tour found with bmh-and-cut, by researchers at the University of Augsburg. . 

Graphic B3. The heline w found by the new preprocessing algorithm which exploits quartic Iwi that 
do not pass through the obtuse *@on of a current tour leg. 

Graphic B4. The quartic Voronoi diagram for the pattial baseline tour. See [C3] for a discussion of the 
Vomnoi diagram for the ETSP. The diagram is a connectivity map which shows how to attach a new city 
to the existing tour. If the new city lies properly within one of the cells depicted by the diagram, it should 



k comead to the endpints of the tour leg about which the cell wraps, while detaching the old 
connection. If a city lies at a Vmnoi junction (where three q&cs intetsect) here are three optimal tours; 
if it lies uniquely on one quartic, there are two optimal toms. 

Graphic B5. The locations of 532 Bell telephone offices in the cantiguow United States. 

GrqphiG 86. The best tour found with branch-andcut, by at New Ymk University and the 
University of Rome. 

Graphic B7. The baseline tour found by the new pprocessing algorithm. 

It should be made c h  that although the panial tom praduced by the algorithm are optimal for 
the citia which they contain, a complete optimal tour may in fact appear quite different in shape than the 
partial tours produced by the prepmessing algorithm. For example, suppose a cluster of internal cities 
remains after the algorithm runs its course hause & of the cities in the cluster f m s  an 
acute angle with the extended hull. It is possible for the cluster to combine two pemubatlms of the hull 
produced by the prepmxssing algorithm into a single optimal subtour originating from some other hull 
segment, thereby rsdically altering the shape of the tour produced by the -ing algorithm. 

Summary. 

For the Euclidean traveling salesman problem, an algmithm has been presented which prepcwes 
any cities which fcnm a disjoint, maximally obtuse angle with the convex hull, or for that matter with the 
resultant seucture. The utiliry of the obtuse condition is to e m  that the interior cities which satisfy the 
criterion lie upon the appropriate side of the quartic kcus which dkiminates the tour leg perturbgtion of 
minimal length. With this enhancement, the hull is extended until only interior cities at an acute angle 
remain to be inserted into the tMu, The algorithm has time complexity O[n log nl, where n is the number 
of cities, In the best case, if all interior cities form a disjoint, maximally obtuse angle with the hull or its 
extended structure, an instance of the Euclidean haveling salesman problem is solved in O[n log n] time. 
At the other e x m e ,  if no cities meet the criterion, then no advanrage is obtained During the development 
of the algorithm, an experiment was conducted to monitor the effect of tour leg mulation on the quartic 
search space of the ETSP.. The effect of a translation is to change the orientation of the obtuse regions 
surrounding two tour legs, so that a newly introduced city may lie within one a the other, within both, or 
within neither. Empirical obmation suggests that there are genuses of quartic curves manifested 
during shanest twr consiruction, only two of which m admissible as legitimate constructs. For these 
two, the genus is seen to change from one to zero at the point where the circumscribing circle of the shorter 
tour leg is internally tangent to that of the longer leg. The pqmxming algorithm exploits the condition 
for which the genus is zero, while simultaneously there is no real intersection of the locus with the obtuse 
region of the longer leg. 
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Appendix A. Tour Leg Translation and the Quartic Locus. 

Appendix A contains a series of computer graphics which visually depict the effect of translating a 
shwtw tour leg while holding a longer one fmed, while at the same time requesting a plot of the 
cormponding q d c  tocus of equal tout leg permbation Recall that a prhrbtion is a synthetic 
optmion which produces two new tour edges by drawing segments from the endpoints of a tour leg to a 
new city, while at the same time discarding the edge currently deli& by the twr leg. The elliptic lengrh of 
the pmubation is the sum of the lengths of the two new edges, minus the length of the old edge. Ihe 
locus of equal tout leg perturbation is the set of poinm for which the elliptic lengths are the same for two 
tour legs. In the graphics, the longer tour leg is oriented along the x-axis, and the one is 
systemafically translated to some other position in the plane. The reader is referred to the text for the details 
of each mnslatbn expiment 

Although upon first inspection it may appear that the translation process is non-robust because the 
genus of the quartic locus may suddenly change with a banslatian of a single pixel in the odnate direction, 
it should be pointed out that the translation pmeu is limited by the grain size (screen resolution) of the 
monitm. If one is permitted to zoom in on the paphics to view the locus at a finer resolution, there is 
actually an infiitely long spec- of behavior ktween shifts in the genus of the locus. The zooming 
opemion can be effectively achieved by simply s d n g  up the amdimes of the 6wt cities by a nominal 
factor, and rectisplaying the data (or a @on of it) to the window. 

The tour leg translation experiments were conducted on a Macintosh IIfx workstation with 8MB of 
RAM memgr, using a version of the Lisp language called Macintosh Allegro Lisp. Since this version of 
Lisp does not yet supgat bitmap options, the author developed a Lisp function to dump the contents of 
a window to a global variable, which in turn is passed to a Laserwriter printer netted to the computer. The 
function which displays the locus is caUed "plot-loci"; a hardcopy listing of the source code accompanies 
the text. The logic is essentially a double do 1 9 :  the outer loop throttles both the position of the tour 
leg and the program termination condition, while the inner conmls the locus plot for a specified position of 
the shorter twr leg. Some of the quartic ellipsoids were of such extensive area that only a small section of 
them c d d  be displayed on the screen. It is conceivable for ON of these ellipsoids to be infinitely long just 
prior to reaching the point where the smaller obtuse region k o m e s  intmnally tangent to that of the longer, 
where the genus of the locus is altered from one to zero, and the locus opens into the shape of a paraboloid 















































Appendix B. The Preprocessing Algorithm Applied to Two Databases. 

Appendix B consists of a series of seven computer graphics depicting the m i n g  of cities for 
two certifiably optimal databases: the 127-city University of Augsburg dataset, and the 532city Bell 
labrsamies dataset For each of these datasets, a gmphic is included to show respectively the positions of 
the cities, the certified optimal tour, and the optimal prhal tour produced by the p q m x s h g  algorithm 
described in the main body of the paper. In addition, for the 127 city dataset, the quartic Voronoi diagmm is 
depicted far the baseline partial tour consftucted by the ppmss ing  algorithm. 
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Manifold Method of Material Analysis 

Gen-hua Shi 
Independent Researcher. 
El Cerri to. California 

' Abstract. The manifold method is a newly developed general method To 

analyze material response to external and internal changes in loads (stress). 

The method uses different displacement functions in differenr material 

domains. The function domains overlap each other, covering the whole 

material space to form a finite cover system. The large displacemenrs of 

jointed or blocky materials of complex shape and moving boundaries can be 

computed in a mathematically consistent manner. Both the finite element 

method (FEM) for continua and the discontinuous deformation analysis (DDA) 

for block systems are special cases of the manifold method. 

Mathematical Mesh and Physical Mesh of Manifolds. Physically, the 

shapes of material objects differ. When the material volume has fractures, 

blocks or different zones, the shape and boundaries become complex. Also, 

computations can be extremely time-consuming under conditions of large 

deformation and moving boundaries. The difficulty occurs because the 

representation via conventional analytical approximations by functions or 

series is feasible and useful only in a local continuous domain which 

represents only a small part of the material space. 

Manifolds connect many individual overlapping domains together to cover 

the entire material volume. Then, the global behavior can be computed by 

functions defined in local covers. The term "manifold" in this paper is a 

generalization of the "differentiable manifold" which is the main subject p f  

differential geometry and topology. 

The manifold method has two independent meshes: the mathematical mesh 

and the physical mesh. The mathematical mesh, which is chosen by the user, 

consists of overlapping finite individual domains which cover the whole 

material space. Regular grids, f inire element mesties or randomly distributed 

convergency regions of series can be combined to form overlapping domains of 

the mathematical mesh. The physical mesh includes the boundaries of the 

material volume, joints, blocks and the dividing lines of different zones. 

The physical mesh represents material conditions which can not be chosen 

artificially. 



. . 
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The mathematical mesh defines the displacement functions and the 

physical mesh limits the integration zones. For manifolds, the finite cover 

system is formed by both meshes. The finite cover system of the manifold is 

flexible enough to represent a wide variety of continuous or discontinuous 

materials located within moving boundaries. 

In Figures 1 and 2, two circles and one rectangle (indicated by thin 

lines) delimit three domains U1, U2, U, to form the mathematical mesh. The 

thick lines indicate the material boundary and inner curved joints. In 

Figure 1, U1 is divided by the physical mesh into two covers I,, 1, U2 has 

two covers 2,, 2, and U, has two covers 31, 32. The larger numbers refer to 

the mathematical domain numbers and the numerical subscripts refer to the 

physical zones. 

Figure 2 shows a more complex mesh. Domain U2 contains three curved 

lines, but only two totally disconnected covers, 21, 2 2 ,  are formed. The 

upper curve (inside cover 21) does not cut through rectangle U2 to form more 

covers, therefore cover 21 is a single cover. Similarly, since domain U, 

just intersects the end of the upper curves, covers 31 and 3, are formed. In 

both Figures 1 and 2, the common part of two or more covers are marked by its 

cover numbers. 

Local Functions and Weight Functions on a Cover System. The 10~41 

displacement functions are defined on individual covers which can be 

connected together to form a global displacement function for overlapped 

covers. 

The local displacement functions fi(x,y) defined on cover Ui 

can be constant, linear, high order polynomials or locally defined series. 

These local functions are connected together by the weight functions wi(x,y), 

where 

wi(x,J') 2 0 (x,y) E U i ;  wi(x,y) = 0 (x,Y) B U i ;  

The purpose of the weight functions wi(x,y) is to take a percentage of 

each local function f i (x,y)  for all Ui containing (x,y) . 
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Using the weight functions wi(x,y) a global function F(x,y) for the 

whole finite cover system is defined from the local functions 

Figure 3 is a one dimensional example: there are three domains or covers 

U1 = AlA2, U2 B I B z ,  U3 = ClC2 

fl(x) = A,A,* X E U1 Wl (x) f 1 (x) = A3A5A2 r X E U1 

f,(x) = 4 8 4 ,  x E Uz W ~ ( X ) ~ ~ ( X ) = B ~ B ~ B ~ B Z ,  x E U ~  

f 3  (x) = C3C4 9 x E u3 w3 ( x )  f 3 (x) = C2C5C4 , X E U3. 

The global function F(x) is 

n 

F (x) = W, (x) fi (x) = A3A5B5B &C5c4 . 
i-1 

Displacement Functions of Manifolds are Suitable for Both Continuous and 

Discontinuous Deformations. For material analysis, four basically different 

methods are often used In order of their development, analytical solutions 

(AS) are the earliest, then came finite difference (FD), the finite element 

method (FEM), and most recently the distinct element method (Dm), and the 

discontinuous deformarion analysis (DDA). The DEM and DDA methods are 

perhaps more convenient and more realistic. The convenience of the latter 

methods is due to the usage of more geometric information. The AS approach 

does not use geometry at all. The FD method uses grids with equal spaces and 

as such, is more general than the AS method. The FEM was a revolution, it 

shifted from differential equations to integral equations; from the smooth 

functions to the piecewise smooth functions. The generally shaped mesh of 

the FEM can give good results for continuous rna~erials. The latest DEM and 

DDA methods are for block systems which are totally discontinuous. 

Displacement functions of DEM and DDA are defined for individual blocks of 

general shape which are completely disconnected from block to block 

The one dimensional example, represented in Figure 4, shows the relative 

ability of those differenr: methods to approach a natural function (thin 

curves) which is discontinuous at a point. The thick smooth curve of Figure 

4(a) is the approximation from the AS and FD methods. The thick piecewise 
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smooth segments of Figure 4(b) are the approximation from FEM. The one 

dimensional finite elements are defined by the line segments. 

The disconnected segments of Figure 4 ( c )  are the approximations from the DEM 

and DDA methods . The one dimens ional blocks are yoxl, ylx2, yzx3, y3x4 , y4x5 
which have more unknowns than the previous methods. Figure 4 ( d )  and Figure 

5 show the approximation of the manifold method. There are seven one 

dimensional covers U, = xoxl, Uz = x,x,, U3 = x,x,, U4 - x2x3, 
U5 - y3x4, U6 = y3x5, U7 = x4x5. Since the natural function has a jump at 

the point x, - yJ, the cover x2x4 was split into cwo covers U, - x,x, and 

us - Y3X4. 
wl (x) f 1 (x) - -40x1 , x E U1 

w2 (x) f 2 (x) = xoAlx2 ? x E U2 

w 3  (XI f 3 (x) = X1A2X3 r x E U3 

W 4  (x) f 4 (x) - %A3 , X E U4 

w, (x) f 5 (x) = B 3x4 r x E U5 

W 6  (x) f 6 (x) = Y3A4X5 , X E -u6 

w, (x) f 7 (x) = X4A5 , x E U7 

The global function 

is very close to the original natural curve. The global displacement 

functions of the manifolds are capable of representing large deformations of 

fractured or blocky materials until the ultimate damage stage in a unified 

mathematical form. 

Finite Cover Systems Formed by Finite Element Meshes. The manifold 

method can perform the computations of the finite element method (FEM) for 

continuous material and the discontrinuous deformation analysis (DDA) for 

block systems in a unified algorithm. 

  he FEM meshes can be used to define domains or mathematical meshes for 
the. manifold method. For any node, all finite elements having this node form 
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a domain (called "star" in algebraic topology). In Figures 6 and 7, the 

domain U5 of node 5 has three elements 2 4 5, 2 5  3 ,  and 3 5 6. The domain 

U1 of node 1 has only one element 1 2 3 which is the only element having node 

1. Any element is the common area of the domains of its nodes. For example, 

domain U5 of node 5 is the area defined by the polygon.2 & 5 6 3; domain 

Uz of node 2 is the area defined by the polygon 1 2 4 5 3; domain U3 of node 

3 is the area defined by the polygon 1 2 5 6 3. The common part of domains 

U5, Uz, and U3 are element 5 2 3. 

The physical mesh of Figure 6 and 7 conforms to the thick lines. The 

covers of Figure 6 and 7 are 

Covers of Figure 6 

Ul 11 

u2 2, 22  

*3 31 32 

u4 41 42 

u5 51 5 2  

U6 61 62 

Covers of Figure 7 

u1 11 

u2 21 2, 

u3 31 

u 4  4, 4 2  

u5 51 

U6 61 

Each point inside the material boundary lies in an "element" which is a 

common part of exactly three covers. 

The following important conclusions can be proven and can also be seen 

directly from Figures 6 and 7: 

[l] the elements are irregularly shaped; 

[2] each element has rhree cover numbers; 

[3] these three covers have one element as cheir common area; 

[4] the rhree covers can be seen as three "nodes" of the element; 

[ 5 ]  the adjacent element has the same nodes along rhe common edge; 

[6] cwo elements divided by fractures or boundaries have totally different 
nodes. 

The "elements" and "nodes" are the extensions of their FEM counterparts. . 
Under the new nodes and elements, the joints can open and slide, the blocks 

can move away and rhe continuous area of the material body can still be 

connected. The proof of these important conclusions come directly from the 

definition of the finite cover systems and the local and global displacement 

functibns of the general manif old method. 

For the DDA method, the material body is simply the individual blocks. 
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Each block is a domain, and each domain is a cover. The mathematical mesh 

and the physical mesh are the same where che covers are not overlapped. 

Therefore the DDA method is the totally discontinuous case of the manifold 

method. 

Assuming there are n covers (or nodes) in the finite cover, the simulta- 

neous equilibrium equations have the form: 

Because each node or cover has two degrees of freedom in a 2-d FEM manifold, 

each element [ K i j ]  in the coefficient matrix given by equation (1) is a 2 x 

2 submatrix. (Di) and (F,) are 2 x 1 submatrices. 

Displacement Function. For the manifold method, the integration zones 

have general shapes, therefore the integrations are more difficult than the 

integrations of the FEM. Analytical solutions were found for many cases of 

the manifold method. At least all numerical integrations can be avoided for 

the FEM meshes within the manifold method. FEM computes the integrations of 

complex Eunctions in simple domains; the manifold method computes the 

integrarions of simple Eunctions in complex domains 

For a triangular element, denote ii : (x,,yi) the coordinates of nodes: 

i - 1,2,3, and the related nodal~displacements as follows: 
c o o r d i n a t e s  d i s p l a c e m e n t s  
i1: (XI,YI) ( ~ 1 ,  v1) ; 
i,: (xz,yZ) (uz,v~) ; 
4 :  ( ~ 3 . ~ 3 )  ( ~ 3 ,  v3) . 

The displacement field can be approximated as 
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Denote : 
- 1 

f l l  f12 f13 

f32 f33 

then 

Stiffness Matrix. The relationship between stress  and strain,  is given 

where, E ,  and v are Young's modulus and Poisson's ratio respectively.  Let 

Then 

The strain energy II,, caused by the e las t i c  stresses o f  element e ,  is: 
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where Se is the area of that element. Then 

{ 
i l l  e = 1; . first node 

i(f) = i2, t' = 2; second node 
is, e = 3; third node. 

I n i t i a l  Stresses Matrix. For the element e, the potential energy of the 

initial constant stresses {a:} = (n:  a,O T&)= is 

where Se is  he area of that element. Then 

Point Loading Matrix. The point loading force ( F ,  F,)~ acts on point 

(x,y) of element e. And 

The potential energy due to the point loading is 

Then 

Body Loading Matrix, Assuming that (f, f,lT is the constant body force 

loading acting on the volume of element e. The potential energy due to the 

body loading is 



where 

s c = / L d r d y ;  s : = / L z d r d y ;  ~ ~ = / L y d r d y .  

Then 

(? ir)(;) -- { F }  i = 1 , 2 , 3 .  
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(11) 

Fixed Point Matrix. A s  a boundary condi t ion ,  some o f  the  elements are 

f ixed  a t  s p e c i f i c  p o i n t s .  This cons t r a in t  can be appl ied  by t w o  very  s t i f f  

sp r ings .  Assume the  f i x e d  po in t  i s  ( x , y )  a t  element e and the s t i f f n e s s  o f  

the s p r i n g s  is p. The sp r ing  forces  a r e  

The s t r a in  energy of  the sp r ing  i s  II,, then 

Therefore,  

Forces of Inertia Matrix. Denote ( u ( t )  V ( C ) ) ~  as the time dependent 

displacements of any p o i n t  ( x , y )  of element e and M as the mass per  u n i t  

area. The potential energy of  the i n e r t i a  force o f  element e is 

Assume (D,(O)) - (0) as the element displacements at the beginning o f  the  

time s t e p ,  ( D , ( A ) )  = (D,) as the displacements at the end of the t i m e  scep, 

and A as the  time i n t e r v a l  of  ch i s  time s t e p .  Then 
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where 

is the velocity at the beginning of the time s t e p .  The potenrial energy then - 

becomes : 

Then 

(17)  

2M A~ [JL[T~]T[~] d x d ~ ]  -+ [ I  r.  8 = 1 ,2 .3 .  

(18)  [ / 'L[T~JT[T*J~~~~] 1~9(0)} + {Fi(rl};  { r = 1,2,3; 
A s = tensor sum, 

where 

In the following we compute 

where 

and 
t ~ ,  = f i r f i s s c  + ( f i r f 2 s  + f i s f 2 r ) S i  + (f irf3.  -1- fidf3r)SG 

where 

As this element of the manifold method is a generally' shaped polygon, then 

PI P2 . . .  Pm-1 Pm PI, P i = ( ~ i , ~ i )  

60 . 



Manifold method 11 

are its ordered vertices rotating from axis x to axis y. Denoting Po - 
(x , ,y , )  as the arbitrary chosen point, the analytical solutions of these 

integrations are the following: 

Normal Contact Matrix. Assume PI is a ver tex;  F'ZP3 is the reference line 

and (xi y,) and ( u i ,  vi) are the coordinates and displacement of Pi, i = 1,2 ,3  

respectively. If points P1,P2, and p3 rotate in the same sense as the 

rotation of ox to oy (Figure 8).  hen the discance d from P ,  to line P,P, is: 

If PI passed edge P,P3, d will be zero. Let 

and we have 
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L e t  

Then (21) becomes 
so d =  { H ) ~ { D ~ }  + { G } ~ { D ~ )  + 7. 

The potent ia l  energy of the normal spring is 

Thus, 

P{H~){HSI* + [ K i ( r ) i ( s ) ] ;  r , s  = 1,2 ,3;  ' 

P { H ~ I I G , ) ~  + [ I j  r,  s = l , 2 , 3 ;  

P { G ~ ) { H , ) ~  -+ [ j r i ]  r1s = 1,293; 

P { G ~ ) { G s ) ~  + [ I j ]  r ,  = 1,2 ,3;  

- P ( $ ) { H ~ )  * { ~ i ( r l } ;  r  s 1,2 ,3;  

{G,) + ' {Fj(r)I; r = 1,2,3; 

where i(1) = i l ;  j(1) = hi 
for element i i ( 2 )  = i2;  for element j j (2 )  = j z ;  

i ( 3 )  = is; j (3)  = j3- 
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Applications. The manifold method has been applied to a variety of 

important engineering problems. For example: 

Figure 9 shows the ability of the manifold method to compute the 

deformation of a joint or fracture within a material. 

Figure 10 shows the failure of an arch under the influence of a point 

load on the center and self weight. 

Figure 11 is a simulation of sliding of rock 'blocks. Notice that the 

center sliding block separatedtwo adjacent blocks during the sliding. This 

result is consistent with laboratory tests. 

Figure 12 shows a soil slope which slides along a circular surface. The 

sliding computation satisfies all equilibrium conditions. 

Figure 13 shows the failure of a gravity dam with a rock foundation. 

The loads are the upstream water pressure and the self weight of the dam. 

Conclusions. This new theory, ,entitled the Manifold Method of Material 

Analysis, incorporates a multitude of simultaneous physical meshes 

(manifolds) which overlay the mathematical mesh. 'These (coupled) physical 

meshes provide the means to consider both jointed and continuous materials, 

and even different material phases (i. e. solid, gas, or liquid). At present, 

a fairly robust theory for the manifold method has been accomplished, as has 

a first generation 2-D dynamic computer code. The preliminary results are 

extremely encouraging (for example, the convergence of solutions has been 

established). Finite element and DDA formulations are special cases of this 

developing theory. A brief listing of a few of' the advantages of the 

manifold method follows: 

Free surfaces and flexible 

boundaries 

Analysis not hindered by boundary 

conditions 

Free form elements (any shape) 

Conservation of energy 

Obeys Coulomb's Law 

Very, very small to very, very 

large deformations 

Statics and dynamics possible 

Analytically correct 

6 3 
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Continuum/discontinutun analysis 
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ABSTRACT. This paper presents an ana ly t i ca l  so lu t i on  f o r  the e l a s t i c -  
p l a s t i c  behavior o f  th ick-wal led cy l inders  under i n te rna l  pressure. The general 
hardening law employed i n  t h i s  i nves t i ga t i on  i s  a piecewdse l i nea r  represen- 
t a t i o n  o f  a r b i t r a r v  s t ress-s t ra in  curves i n  un iax ia l  form. Closed-form a n a l y t i -  
c a l  so lu t ions  are developed f o r  the stresses, the e l a s t i c  and p l a s t i c  s t ra ins ,  
and the displacements by using Tresca's y i e l d  c r i t e r i o n  and i t s  associated flow 
ru le .  Experimental data obtained from cy l inders  made o f  e i t h e r  SAE 1045 s tee l ,  
OFHC copper, o r  aluminum a l l o y  1100 are used t o  determine the mater ia l  
constants. Numerical r e s u l t s  f o r  p a r t i a l l y - p l a s t i c  and f u l l y - p l a s t i c  cy l inders  
are presented f o r  the r a d i a l  d i s t r i b u t i o n s  o f  p l a s t i c  hoop s t ra in ,  rad ia l ,  and 
tangent ia l  stresses. 

1. INTRODUCTION. O f  a l l  the ava i lab le  e l a s t i c - p l a s t i c  solut ions,  the 
problem o f  pressurized thick-wal led cy l inders  has received the greatest atten- 
t ion .  This i s  because o f  the symmetric nature o f  the problem and i t s  p r a c t i c a l  
importance t o  pressure vessels and the autofret tage process o f  gun tubes. Many 
so lu t ions  f o r  t h i s  problem have been reported over the l a s t  four decades [I -31.  
Analy t ica l  so lu t ions  can be obtained only when s imp l i f y ing  assumptions are made 
regarding mater ia l  propert ies.  Bland [ 2 ]  developed ana ly t i ca l  so lu t ions  f o r  
mater ia ls  w i t h  l i n e a r  hardening propert ies.  Recently, Megahed [3 ]  considered a 
nonlinear hardening law a = Y + A*epn i n  un iax ia l  form and developed an approxi- 
mate so lu t i on  f o r  any value o f  the strain-hardening exponent n. Closed-form 
ana ly t i ca l  so lu t ions  f o r  the p l a s t i c  hoop s t r a i n  can be obtained only fo r  four 
p a r t i c u l a r  values (n  = 1, 1/2, 1/3, and 1/4), and the i n teg ra l  has t o  be eval- 
uated numerically f o r  n = 1/3 and l /d .  

The general hardening law employed i n  t h i s  i nves t i ga t i on  i s  a piecewise 
l i n e a r  representat ion o f  actual  s t ress-s t ra in  curves i n  un iax ia l  form. A f i n i t e  
number o f  s t r a i g h t  l i n e s  can represent a r b i t r a r y  curves w i t h  greater accuracy 
than other representations [ 4 ] .  The problem i s  formulated i n  a manner s i m i l a r  
t o  [ 2 , 3 ]  by using Tresca's y i e l d  c r i t e r i o n  and the associated f low ru le .  
Closed-form ana ly t i ca l  so lu t ions  are developed f o r  the stresses, the e l a s t i c  and 
p l a s t i c  s t ra ins ,  and the displacements. 

2. BASIC EQUATIONS. Consider a long thick-wal led cy l inder ,  i n te rna l  
radius a and external  radius b. t ha t  i s  subjected t o  i n te rna l  pressure p 
causing p a r t i a l  p l a s t i f i c a t i o n .  Assuming small s t r a i n  and no body forces i n  the 
axisymmetric s ta te  o f  generalized plane-strain, the r a d i a l  and tangent ia l  
s t ress,  or and oe, must s a t i s f y  the equ i l ib r ium equatjon 

and the corresponding s t ra ins ,  E ,  and ~ e ,  are given i n  terms o f  the r a d i a l  
displacement, u, by 



Total s t ra ins  are decom~osed i n t o  e l as t i c  and o l as t i c  comDonents and the s t ra in -  
stress re la t ions  are 

where E and v are e l as t i c  constants. Subject to @g 3 uz 3 Or, Tresca's c r i -  
te r ion  states that  v ie ld ina occurs when 

where the y i e l d  stress a i s  a funct ion o f  p l a s t i c  s t r a i n  E ~ .  The associated 
flow r u l e  states that  

d~~~ = -dtzpD 3 0 and d~~~ = 0 ( 5 )  

Hence. from Eq. (3c)  

and the t o t a l  ax ia l  force on anv sect ion i s  

There are three'cases of importance: f i r s t .    lane-strain, c Z  = 0: second. a tube 
~ i t h  open ends. F = 0 :  and t h i r d .  a tube wi th  closed ends. F = ra2D. I n  the 
l a t t e r  two cases. subs t i tu t i on  i n t o  €a. (6bI determines E,. Since c Z  i s  now 
known. Eqs. (3al and (3bl  are inverted i n  order to exoress stresses i n  terms o f  
t o t a l  s t ra ins  and ~ l a s t i c  h o o ~  s t r a i n  as fol lows: 

where t= E/T(l+v)(l-2vl]. Subst i tu t ion o f  Eos. (?a)  end (7b)  i n t o  Egs. (1) and 
( 2 )  y ie lds  the fol lowinq d i f f e r e n t i a l  equation: 

In tegra t ing wi th  respect t o  r leads t o  

1-2v du/dr + u/r  = -(---- 
l-V ( z J + E ~ ' )  + 2C 

where 



I r i t e ~ ~ ~ u t i r ~ u  again v ie lds  the ana lv t i ca l  so lu t i on  

where C and D are i n tea ra t i on  constants t o  be determined from boundarv con- 
d i t i ons :  or = -p a t  r = a  and or = 0 a t  r = b. 

U ~ o n  subs t i t u t i on  o f  the r e s u l t i n g  values o f  C and D i n t o  the expressions 
o f  displacement. r a d i a l  and hoop stresses, the fo l l ow ing  d i s t r i b u t i o n s  are 
obtained: 

where = € / ( I -Vz l ,  and Jo i s  the value o f  the i n teg ra l  .I a t  the p l a s t i c  f ron t .  
r = o ,  i . e . ,  

Note t h a t  cgP = 0 and J = Jo throughout the  outer e l a s t i c  zone-def ined by 
p < r < b. A t  the p l a s t i c  f r o n t ,  the Tresca e f f e c t i v e  st ress u = og - or = Y ,  
where Y i s  the i n i t i a l  y i e l d  st ress and a lso caw = 0 .  Therefore, using Eq. 
( l l b )  t o  provide a, one read i l y  obtains 

Using Eq. ( 7 ) ,  the d i s t r i b u t i o n s  of or, og, and u  can be w r i t t e n  i n  simpler 
forms as fol lows: 

Eu/r = ( l+v ) ( l -2V) f f r  + Y(l-vZ)p2/r2 - vEeL ( 1 3 ~ )  

It i s  obvious from Eq. (13b) t ha t  Tresca e f f e c t i v e  s t ress  2 i s  simply given by 

Therefore, i f  the r a d i a l  v a r i a t i o n  o f  p l a s t i c  hoop s t r a i n  i s  known, the i n t e g r a l  
J and a l l  f i e l d  quan t i t i es  can be determined. 



3. GENERAL HARDENING. The general hardening law employed i n  t h i s  inves t i -  
gation i s  a piecewise l i near  representation. Arb i t rary  stress-stra in curves i n  
uniaxia l  form can be approximated by a f i n i t e  number of  s t ra igh t  l i nes  141. The 
s t ra ight  l i n e  through the o r i g i n  i s  given by the re l a t i on  

where E i s  Young's modulus. A l l  o f  the other s t ra igh t  l i nes  are given by the 
r e l a t i on  

- - 
U Il-mi)o,i + miEE (16 ) 

where uoi i s  the stress a t  the intersect ion o f  the two s t ra igh t  l i nes  given by 
Eqs. (15 )  and (161, and m i E  i s  the slope o f  the s t ra igh t  l i nes  given by Eq. (16). 
Let U i ,  E i  be the stress and s t r a i n  a t  the in tersect ion of two s t ra igh t  l ines 
wi th  slope mi-1E and m i €  as shown i n  Figure la .  Then 

which leads t o  &i and U i  i n  terms o f  U O ~  and m i  

and 

Eq. (16) can be wr i t ten  also as a function of  e f fec t i ve  p l as t i c  s t r a i n  EP as 
shown i n  Figure lb .  

where hi = m i  / ( 1-mi ) ,  

Since cop = -g and E~~ = 0, the e f fec t i ve  p l as t i c  s t r a i n  zP i s  determined 
as 2cOP/y/3, and hence, Eq. (14 )  i s  rewr i t ten i n  terms of  the p las t i c  s t r a i n  i n  
the tube as 

A comparison between the expressions for  e f f ec t i ve  stresses provided by Eqs. 
(18) and (19) yields the fo l lowing e x p l i c i t  equation f o r  eP: 

which i s  v a l i d  i n  zip 6 gP < ii+lP and r i  3 r 3 r i+ l  and 

b i  = ( & / z ) / ( ~ - v ' )  + h i  0 C i  = U O ~ / U ~  



The values of  ri and ri+l can be determined by 

If ZIP = 0 and sol = Y, then r l  = p.  This i s  true for most materials. Since 
r j  ) a ,  the ~ ~ I c u l a t i o n  of ri for i = 1,2...m should stop when the above rela- 
tion is violated, i.e., rm+l < a. Let us define Vi f o r  i = 1 , 2 ,  ... m by the 
follouring integral: 

Then 

and the maximum value o f  V is 

The integrals V i  (i=1,2, ..., m-I), V, and Vo given analytically by Eqs. ( 2 3 ) ,  
( 2 4 ) ,  and (25) can be easily evaluated. The integral J is related to the 
integral V by 

All field quanti t ies u. c,, ~ e ,  art  00, az, and eeP can now be calculated. 



4. MATERIAL PROPERTIES. Test members were made from three d i f f e r e n t  
metals as fol lows: SAE 1045 s tee l ,  OFHC copper, and aluminum a l l o y  1100 [4]. 
The values o f  the e l a s t i c  constants ( E  and v )  f o r  the  three metals are shown i n  
Table 1. The values of the constants (uoi, m, u i ,  E i )  approximating the  p l a s t i c  
po r t i on  o f  the s t ress-s t ra in  diagram f o r  three metals a re  shown i n  Table 2. 

TABLE 1. ELASTIC CONSTANTS FOR THREE METALS 

TABLE 2. PLASTIC CONSTANTS FOR THREE METALS 
- - -- -- 

Mater ia l  

SAE 1045 s tee l  
OFHC copper 
aluminum a l l o y  1100 

Each o f  the  s t ress -s t ra in  diagrams can be approximated by a f i n i t e  number o f  
s t r a i g h t  l ines w i t h  extreme accuracy. The e r r o r  introduced by the  approximation 
i s  less than 1 percent f o r  a l l  cases. 

E, Ksi 

30,000 . 
16,000 
10,250 

v 

0.29 
0.35 
0.33 

Stra igh t  Line U i ,  Ksi ,Uoj, Ksi E-j, % 

SAE 1045 Steel 

mi 

0.05083 
0.02858 
0.00847 
0.00309 
0.00128 

1 
2 
3 
d 
5 

43.4 
66.924 
90.638 
103.542 
122.280 

43.4 
54.0 
80.0 
95.0 

Ill .O 

0.145 
1.687 
4.453 
9.532 
29.745 

OFHC Copper 

1 
2 
3 
4 
5 
6 
7 

2.50 
3.25 
4.00 
5.37 
8.40 
21 .O 
39.0 

Aluminum A l loy  1100 

0.016 
0.059 
0.136 
0.765 
2.790 
9.137 
30.350 . 

0.17125 
0.07063 
0.03125 
0.01991 
0.01313 
0.00450 
0.00078 

1 
2 
3 
4 
5 

2.50 
3.686 
4.553 
7.700 
14.151 
27,484 
42.757 

8.0 • 

11.942 
13.557 
15.007 
16.310 

8.0 
11 .O 
13.0 
14.7 
16.1 

0.078 
0.135 
0.184 
0.332 
1.131 

0.67024 
0.32683 
0.09561 
0.01590 
0.00210 



5. NUMERICAL RESULTS. Typical resu l t s  f o r  the ana ly t ica l  so lu t ion are 
presented f i r s t  by means o f  prescribing a p l as t i c  f ron t  and determining the 
corresponding p l as t i c  hoop s t r a i n  and rad ia l  and hoop stresses i n  the tube. A 
tube wi th  b/a = 2 i s  employed, and the p l as t i c  f ron t  i s  prescribed a t  p/a = 1.0, 
1.2, 1.4, 1.6, 1.8, and 2.0. Figure 2 i l l u s t r a t e s  the stresses and p l as t i c  hoop 
s t ra ins  obtained using the material Constants for  SAE 1045 steel .  Figures 3 and 
4 present s imi lar  resu l ts  f o r  OFHC copper and aluminum a l l oy  1100, respectively. 
Figure 5 shows a comparison o f  stresses and p l as t i c  hoop s t ra ins  f o r  three 
pa r t i a l l y -p l as t i c  tubes a t  p/a = 1.6. Figure 6 presents a s im i la r  comparison 
for three f u l l y -p l as t i c  tubes a t  p/a = 2.0. Future work re lated t o  the resu l t s  
obtained here w i l l  look i n t o  the e las t i c -p las t i c  behavior o f  the tube during 
pressure release. The inf luence o f  phenomena such as the Bauschinger e f f ec t  on 
residual stresses should be modelled [ 5 , 6 ] .  
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Department of Mechanical and Aerospace 
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ABSTRACT. We study the problem of the initiation and growth of shear bands in three 
materials by analyzing the thermomechanical deformations of a block of nonuniform 
thickness undergoing overall simple shearing deformations. Each of these materials is 
assumed to obey the Johnson-Cook law. It is found that, for each material, the 
deformations of the block have become nonhomogeneous by the time the shear stress 
attains its maximum value. For-Armco IF iron, a narrow band at the center develops when 
the shear stress there has dropped to 85% of its peak value, and the same occurs for the 
tungsten alloy when the shear stress at the specimen center equals 80% of the maximum 
value. For the depleted uranium satisfactory results could be computed only till the shear 
stress dropped to 99% of the peak value. 

INTRODUCTION AND GOVERNING EOUATIONS. Tresca (1878) and Massey (1921) 
observed hot lines, now referred to as shear bands, during the hot forging of a metal. The 
research activity in this area has increased extensively during the last decade or so, possibly 
due to the realization that shear bands precede shear fractures, and once a shear band has 
formed subsequent deformations of the body occur in this narrow region and the strength 
of the rest of the body is not fully realized. We refer the reader to recent articles by Shawki 
and Clifton (1989) and Batra and Kim (1990) for references to the shear banding related 
works. 

Even though a more realistic model of any of the experimental studies will involve 
analyzing at least a two-dimensional problem, we presume that useful information regarding 
the initiation and growth of a shear band in a material can be obtained by studying the 
simple shearing deformations of a block of non-uniform thickness and made of the material 
to be investigated. We assume that the thermomechanical response of each of the three 
materials studied herein can be modeled by the Johnson-Cook (1983) law with material 
parameters assigned values given by Johnson et al. (1983). Pertinent equations in terms of 
non-dimensional variables are: 

Supported by the U. S. Army Research Office Contract DAAL03-88-K-0184 to the 
University of Missouri - Rolla 



where 

P = M p v O c H ) , a n d w ( y )  = w ,  a = p v,/cr,, 

gives the thickness variation in the block. A schematic sketch of the problem studied is 
shown in Figure 1. 

Figure 1. A schematic sketch of the problem studied. 
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In equations (1) - (4), v is the velocity of a material particle in the direction of shearing, s 
is the shear stress, a comma followed by y indicates partial differentiation with respect to 

y, a superimposed dot stands for the time derivative, yp is the plastic strain-rate, equation 
(3) is the flow-rule proposed by Johnson and Cook, A, B, n, a,, and D are material 

parameters, yo is the reference strain-rate, and in equation (4) we have assumed that all of 
the plastic working is converted into heating. The non-dimensional numbers a and P signify, 
respectively, the importance of inertia forces relative to the flow stress of the material, and 
the effect of heat conduction. In the expressions for a and P, p is the mass density, v,, the 
final value of the speed imposed on the top surface of the block, o, the yield stress in a 
quasistatic simple shearing test, k the thermal conductivity, c the specific heat, and H the 
height of the block. The variables have been non-dimensionalized as in Batra and Kim 
(1992). 

For initial and boundary conditions, we take 

That is, the block is initially at rest, is stress free, and is at a uniform temperature. The 
lower and upper surfaces of the block are kept at a constant temperature by the grips which 
act as heat sinks, the lower surface is kept fixed while on the top surface, the prescribed 
shearing speed increases from 0 to 1.0 in a non-dimensional time of 0.01. 

We note that the coupled partial differential equations (1) through (4) are highly 
nonlinear. Their approximate solution under the side conditions (6) - (8) has been obtained 
by the finite element method described in Batra and Kim (1990). 

NUMERICAL RESULTS. In order to compute results, we took 

and used a nonuniform finite element mesh with y-coordinate of the nth node given by 

Values of material parameters for the three materials studied herein are taken either from 



the paper by Johnson et aL (1983) or from a handbook are listed in Table 1 of Batra and 
Kim's paper (1992). We note that the values of lo3 a and lo3 P for Armco IF (interstitial 
free) iron, tungsten alloy, and depleted uranium are (2.362,1.349), (0.449,0.217), and (0.681, 
0.848), respectively. 

Figures 2 through 5 show solution surfaces for Armco IF iron depicting, respectively, 
the evolution of the velocity, shear stress, temperature rise, and the plastic strain within the 
specimen. The dark lines in these figures correspond to the region where a majority of 
nodes in the finite element mesh are concentrated. The three stages of the localization 
phenomenon, as reported by Marchand and Duffy (1988) based on their experimental 
observations of torsion tests on a HY-100 steel and by Wright and Walter (1987) who 
studied the simple shearing problem for a typical steel, but did not account for strain 
hardening and elastic effects, are most evident in the velocity plots of Fig. 2. The shear 
stress attains a maximum value of 3.65 at an average strain of 2.68, and the shear stress 
begins to drop noticeably when the average strain equals 3.37. The velocity field begins to 
show a sharp change in its slope within the central part of the specimen at an average strain 
of 3.4, and at an average strain of 4.0, the velocity variation within the block consists of 
three straight line segments. The parts of the block near the lower and upper surfaces move 
as a rigid body with the velocity of these surfaces, connected by a narrow thin central region 
within which the velocity changes sharply from nearly zero to almost one. The discontinuity 
in the velocity field across the shear band as asserted by Tresca (1878) and Massey (1921) 
corresponds in our computations to the severe increase in the speed of the material particles 
across the shear band because, in our work, the velocity field is forced to stay continuous 
throughout the region under study. Froril the velocity field plotted in Fig. 2, it is hard to 
decipher when it starts deviating from the linear variation. Recalling that the ends of the 
block are kept at a fixed environmental temperature, the solution surface for the 
temperature suggests that the temperature rise at the specimen center is somewhat 
discernible at an average strain of 2.7. Subsequently, the temperature difference between 
the central hotter region and the surrounding less hot material keeps on increasing, resulting 
in a very narrow central region of immensely heated material. 

Figures 5, 6, and 7 show; respectively, the solution surfaces of velocity, shear stress, 
and the temperature rise for the tungsten alloy studied. The peak shear stress at the block 
center occurs at an average strain of 0.47%, and the shear stress does not become uniform 
through the thickpess of the block. The shear stress at a point in the block gradually 
decreases till the average strain in the specimen equals 7%. Then the shear stress drops 
precipitously, and soon after that the computations become unstable in the sense that the 
spatial and temporal distributions of the shear stress show oscillations. The solution surface 
for the velocity shows that soon after the velocity on the top surface attains its steady value, 
the velocity distribution through the thickness of the specimen is no longer linear, implying 
thereby that the block is deforming nonhomogeneously. At an average strain of 0.08, the 
motion of the block can be divided into three parts, the nearly stationmy lower portion, the 
narrow central region in which the velocity increases from essentially 0 to 1.0, and the top 
part moving virtually as a rigid block with the velocity prescribed on the top surface. The 
solution surface for the temperature rise suggests that the higher temperature at the 
specimen center relative to that at the surrounding points is noticeable at an average strain 



of 3.5%. The difference between the temperature at the block center and the surrounding 
points continues to increase, and the slope of the curve depicting the temperature at the 
block center versus the average  rain becomes quite steep at an average strain of 8%. 

For the depleted uranium, we have plotted in Figures 8, 9, and 10, the solution 
surfaces for the velocity, the shear stress, and the temperature rise. The shear stress attains 
a maximum value at an average strain of 14.6%, and then decreases very slowly. The 
computations were stopped when the shear stress had dropped to 98.7% of its peak value, 
since the solution could not be computed to the same accuracy as fox the other two 
materials. At an average strain of 18%, the velocity field begins to increase sharply in the 
central portion and the thickness of the central region starts decreasing. The temperature 
at the block center does not rise as rapidly as it did for the other two materials studied 
herein. 

Figure 11 exhibits the deformed positions of a line element, initially straight in the 
unstressed configuration, when s/s,, = 1.0,0.95,0.85,0.80, and 0.60 for the Armco IF iron, 
s/sm, = 1.0, 0.95, 0.90, 0.85, 0.80, and 0.75 for the tungsten alloy, and s/s,, = 1.0, 0.998, 
0.996, 0.994, and 0.990 for the depleted uranium. Since the deformed position of the line 
even at s/sm, = 1.0 is not straight, the deformations of the block are nonhomogeneous at 
s/sm, = 1.0, probably due to the nonuniform thickness of the block. For Armco IF iron, 
the strain at the center of the block increases immensely once the shear stress there has 
dropped to 90 percent of its maximum value. For the tungsten alloy, the shear strain at the 
center when s/s,, = 0.85 is considerably lower than that for the Armco iron, and the strain 
at the center continues to increase as the shear stress there drops. For the depleted 
uranium, the deformation in the central region does not become excessive because the 
computations could not be cqrried far enough for the shear stress to drop to a large degree. 

CONCLUSIONS. We have analyzed the initiation and growth of shear bands in Armco IF 
iron, tungsten alloy, and depleted uranium. The coupled nonlinear partial differential 
equations governing the thermornechanical deformations of a block of nonuniform thickness 
and undergoing overall simple shearing deformations were integrated by using the Gear 
method included in the package LSODE. Results for the depleted uranium could not be 
computed with the same accuracy as for the other two materials once the shear stress 
dropped to 99% of its maximum value. However, the deformation at the specimen center 
had begun to localize even at that instant. For the other two materials, sharp gradients of 
the deformation developed at the specimen center once the shear stress dropped to 90% of 
its peak value. 
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Figure 2. The solution surface for the velocity for the Armco IF iron 
block being sheared at a nominal strain-rate of 1500 sec. - 1 

3 7 



Figure 3. The solution surface for the shear stress for the Armco IF 
iron block being sheared at a nominal strain-rate of 1500 
sec. - L 



Figure 4. The solution surface for the temperature rise for the 
Armco IF iron block being sheared at a nominal strain- 
rate of 1500 sec.'l 



Figure 5. The solution surface for the velocity for the tungsten alloy block 
being sheared st a nominal strain-rate of 1500 see.-I 



Figure 6. The solution surface for  the shear stress for  the tungsten al loy  
block being sheared at a nominal strain-rate of 1500 sec.'l 



Figure 7. The solution surface for the temperature rise for the tungsten alloy 
block being sheared at a nominal strain-rate o f  1500 sec.-l 
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Figure 9.  The solution surface for the shear stress for the depleted 
uranium block being sheared at a nominal strain-rate of 
1500 sec.'l 



Figure  10. The solution surface for the temperature rise for the 
depleted uranium block being sheared at a nominal 
strain-rate of 1500 set.-l 
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Abstract 

Problems involving nonconvex energies where the equilibrium con- 
figuration may involve several phases have received alot of attention in 
recent years. We begin studying an evolution modeling the 
deformations of a simple viscoelastic material and a nonconvex energy. 
We show that the approximate solution given by a standard finite el- 
ement method will converge at an optimal rate ta the true solution. 
Through numerical computations we start to explore the long time 
behavior. 

Introduction: W e  analyze and compute approximate solutions to the par- 
tial differential equation 

with 
u = g on an x [o,T] 

and 
U ( - , O )  = 110, ut(* ,O) = 011 Q. 

This equation models antiplane shear deformations of an isotropic, homoge- 
neous, incompressible, viscoelastic solid. The region 12 is the cross section 

'Supported by the U.S. Army Research Office. 



of a long tube; u represents the component of displacement in the direc- 
tion perpendicular t o  R. Since the deformation is of antiplane shear type u 
depends only on x E R and time 1. 

This short report summarizes results in French and M'ahlbin [FW] where 
we assume that g = 0 and the initial data is smooth. Mre also make require- 
ments on the growth of $. With these hypotheses the regularity theorems 
of Engler [El apply as well as our approximation results. 

Static Case: One hopes that as ut 3 0 the solution will tend to a minimizer 
of 

(1) 

where v = 0 on OR. The Euler-Lagrange equation for a critical point of J is 

which may not be well defined if v is not sufficiently smooth. W e  will consider 
q3 that are nonconvex (solid line) and relaxed or convexified (dashed line) 
(Figures 1 and 2). 

Figure 1 



Figure 2 

A theorem from Ekeland and Temam [ET] provides a connection between 
these two cases; if v is a solution of the nonconvex problem it is also a 
solution of the relaxed problem. If {v,) is a minimizing sequence for the 
nonconvex problem then for a subsequence {v,,} we have weak convergence 
to a solution of the relaxed problem. 

Bauman and Phillips [BPI show in a specific case that the nonconvex 
problem has no solution. This leads to an interesting question that we 
begin t o  explore in our computations: What does u( . ,  t )  tend to as t - oo 
in the nonconvex case? 

We complete this section by noting some multigrid computations done 
on the convexified static problem by Goodman, Kohn, and Reyna [GKR]. 
Figure 3 is a surface plot of ( Vrh ( where w h  is their numerical solution. 
The '+' represent points where t l  51 v t ' h  15 t z .  Analysis of finite element 
approximations to the relaxed problem were done in [F]. 

Finite Element Method for the Evolution Problem: The approxinlate 
solution is sought in the finite dimensional space Sh c H:(R) which we 
assume consists of piecewise polynomials of degree 5 r - 1 on a quasi- 
uniform mesh where the diameter of the element domains is proportional to  
h. 



Figure 3 

We analyzed the following semi-discrete finite element method: Find 
uh( - , t ) -€  Sh for t E [O,T] such that 

for all x E Sh where uh(.,O) st uo and u ~ , ~ ( - , O )  Y-- UI. 

The resulting system of ordinary differential equations has a unique 
global in time solution. We prove the following estimate coilcerning the 
accuracy of the method: 

THEOREM: There exists a constant C independent of I 1  sutll that  

II ( U  - ~ h ) ( . T t )  I I ~ z ~ n , l  Ch' 

for t [O,T]. 

REMARK: The constant C depends on norms of u and ut a.s well as the 
final time T. We also assume that $ is CZ and therefore doesn't have the 
sharp corners displayed in figure 2. 



Computations: We performed two numerical experiments using the met- 
hod (2) which we discretized in time by a second order energy preserving 
scheme (See [FS] and [CHMM]) which has been labeled a generalized Crank- 
Nicolson scheme. We used fixed point iteration to solve the nonlinear sys- 
tems on each time step and preconditioned conjugate gradients to solve the . 

linear systems. In the first experiment the nonlinear functioil I,!I is chosen 
t o  be the same as the one used in [GKR] (Dashed line figures 1 and 2.). 
In the second we formed a nonconvex energy from the [GIiR] energy (Solid 
line figures 1 and 2). In each computation we tracked 11 uh( - , t )  llLz(n). In 
both cases it first increased quickly then decreased, tending to zero asymp- 
totically. We stopped the computation when the norm was small. Figures 4 
and 5 have the steady state surface plots of I ~ U I ,  I for t h e  first and second 
experiments. 

Notice the plot from the relaxed case is very similar to the plot from 
[GKR]. 

Figure 4: Relaxed Case 



Figure 5: Nonconvex Case 
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ABSTRACT 

Numerical schemes, based on finite elements in space and finite differences in time. are outlined 

for modelling stationary and moving cracks in two-dimensional linear viscoelastic materials. The 

mathematical formulation involves a linear single time integral constitutive model for the viscoelastic 

behaviour, together with the inclusion of a Barenblatt failure zone in ~e viscinity of the crack tip. 

Crack propagation and subsequent motion is based upon a crack opening displacement criterion (COD). 

1. INTRODUCTION 

We give here an outline of a model for predicting the onset of fracture and for following a 

propagating crack for Mode I planar fracture problems involving viscoelastic solids. The mathematical 

model of the deformation assumes a quasi-static linear viscoelastic response, constant Poisson's ratio and 

small deformation strains. The discretisation of this mathematical model is achieved using finite 

elements in space and finite differences in time, and with this approximations to the deformation 

resulting from given external loadings are calculated. The fracture of the viscoelastic material is 

modelled by incorporating a failure zone of the Barenblatt type about the crack tip, see Barenblatt [I]. 

Knauss [3] and Schapery [5]. The purpose of the failure zone is to include in the model some 

representation of the cohesive forces and the local damage which occurs in the neighburhood of the 

crack tip. It is assumed that there is small scale yielding at the crack tip, and constant stress in the 

failure zone. A further assumption, necessary to the validity of the Barenblatt concept, is that the 

material is free of voids. The state of crack propagation is determined using a Crack Opening 

Displacement (COD) criterion. 

The model and finite elemenvfinite difference scheme have been applied to various Mode I 

viscoelastic fracture problems. Space limitations here determine that only an outline of the scheme and 

a synopsis of the numerical results can be presented; more complete details and more extensive results 

can be found in Warby et al. [7]. A theoretical error analysis. together with error estimates, for the 

approximations to the deformation of the lineat viscoelastic solid, can be found in Shaw et al. [6]. 
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The work of Whiteman was similarly supported in part by the United States Army Research, 
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In the present work consideration has been limited to linear single integral constitutive relations. 

appropriate to standard linear solids. This type of constitutive equation may be regarded as a first 

approximation to the constitutive equations required for modellmg ridistically the behaviour of more 

general isotropic viscoelastic solids under isothermal conditions. Clearly the choice of the linear single 

integral relation restricts the range of materials to which the model may be applied, see e.g. Christensen 

[2]. However, for the relevant class of materials the algorithm is able to predict the critical states prior 

to crack propagation and the form of crack growth subsequent to this. Our intention in subsequent work 

is to track the growth of cracks for a range of materials and to incorporate nonlinear single integral, or 

multi-integral constitutive relations into the model. 

2. MODEL OF VISCOELASTIC DEFORMATION 

2.1 Equilibrium Problem and Weak Formulation 

We consider the deformation of a solid body defined in a region i2 C IR2 with boundary a&!, under 

the action of external forces. The displacement at the paint x ( x , . x ~ ~  E LI (the reference 

cooPiguration) for time t E (0.q = J is u -- u(x.t) = (u,(~.t).u,(x,t))~. The stress and strain tensor 

components are denoted respectively by o.., E ~ ~ .  1 5 i,j 5 2. 
'J 

From the law of conservation of momentum (for the case where there is no acceleration) the 

deformation u of the body under the action of external forcer f -'(I,. f2)' and boundary tractions 
T 

g G (g , g ) , at time t satisfies 
1 2  

together with boundary conditions 

where aR aQ U an, and n = (n,, n2)T is the outward normal unit vector to aD at any point. 
C 

With the usual Sobolev space notation we specify the space V of functions defined over D as 

If u(x,t) E V x H'(J) then the weak form of (2.1) - (2.3) is obtained by multiplying (2.1) by v(x) E V 

and integrating over Go. Thus in the weak problem we seek u(x.t) E V x H'(J) such that 



where the tensor components E.. are defined by 
'J 

and the vectors E and u are given by E ( E ~ ~ . E ~ ~ , z E ~ ~ )  and a E 

The involvement of the displacement u(x.t) in (2.4) requires a constitutive relation. For the case of 

linear viscoelasticity considered here, under the assumption that there is no deformation for time r < 0, 

we take the constitutive relation to be 

where 

is the 3x3 stress relaxation matrix OF the viscoelastic material, +(t-T) is the stress relaxation function 

and Do is a 3x3 matrix involving the Lamb coefficients associated with the instantaneous elastic 

response of the material. 

Using the vectors a and r as defined above, we may write (2.4) as 

and substitution of (2.5) for a in (2.7) gives 



2.2 Numerical Discretisation 

The numerical algorithm to be applied to (2.8) is based on finite elements in space and finite 

differences in time. Thus for any time t E J the region Ja is partitioned into elements oe such that a = 

h U LIe and a finite dimensional space S C V consisting of piecewise polynomial.functions defined over 

the partition is set up. We first produce the semidiscrete form of (2.8) by defining the approximation to 

u(x,t) 

where N(x) is the 2x2n matrix involving the usual spatial finite element basis functiom far the n n& 

of the piecewise polynomial approximation over and 6(t) is the vector of (nodal) functions associated 

with each node. In the usual way, see e.g. Zienkiewicz [S]. we may define 

and the corresponding approximation to the stress vector using (2.5). The semi-discrete form of (2.8) is 

thus the system 

The final discrete form of (2.8) is obtained by taking time levels t., j = 0,1,2, ... and for t.- < r < tj 
J J '  

approximating 3(z) by (U(t.) - U(t. ))/(t. - t. ) so that 
J J-1 J J-' 

The system (2.11) is solved for U(t.) which gives the nodal approximation to u(x,t.). 
J J 

It can be seen that the history of the deformation is retained throughout the time stepping process 

by the summation q = 1.2. ....j- 1. The effect of this depends on the form of the stress relaxation 

function 4(s) in (2.6). 



3. MODE I VISCOELASTIC FRACTURE 

3.1 Linear Elastic Fracture 

Let us consider the Mode I linear elastic fracture problem as in Fig. 1, where the external loadings 

Le are applied to the crack faces at distances remote from the crack tip. For problems of this type the 

strength of the stress singularity local to the crack tip is given by the stress intensity factory K. This 

factor can be calculated from the path independent J-integral. see Rice [4], which is defined as  

where r is a contour running anticlockwise from the lower to the upper crack faces enclosing the crack 

tip, W is the strain energy density and the Ti are the components of the outward normal traction to T. 

For plane stress and plain strain problems of this type J - K', so that approximafions to K may be 

obtained from approximations to J. 

Fig. 1. 

3.2 Correspondence Principle 

For viscoelastic materials of the type described in Section 2 i t  is possible at time t to relate the 

stresses and strains of problem (2.1) - (2.3) to the stresses $ and strains eR of a related reference 

elastic problem, see Schapery [5]. In particular, if for the Mode I fracture problem the elastic body is 
R subject to the same boundary conditions as the viscoelasric problem at time t. then u(x.t) = a (x) and 

R R hence K = K , where K is the stress intensity factor of the elastic Thus K can be obtained 
R from J . the J-integral for the refercrlce elastic problem. 



3.3 Failure Zone 

In order to give a more physically realistic model of the fracture of the viscoelastic material, we 

introduce. a Barenblatt failure zone, see [I]. The mathematical concept of this is that in a small zone of 

length af behind the crack tip, see Fig. 2a, cohesive stresses Lf are applied normal to the crack faces in 

order to cancel the stress singularity at the crack tip produced by the external loads L, applied to the 

body, see Fig. 2b. In the model the cohesive stresses Lf are assumed to be constant and the length af is 

determined as follows. 

Fig. 2a Fig. 2b 

Re F3 
At time t let K (t) and K (apt) denote the stress intensity factors associated with the two 

reference elastic problems in which the external load L, and the cohesive stresses Lf are applied 

separately. The length af is then determined from 

Re Rf K (t) + K (apt) = 0 . 
or equivalently from 

or equivalently by solving 

where 



In (3.3) J~~ and J~ are the J-integrals for the reference elastic problems respectively with external load 
Rf L, and failure load Lp, and U, (-af,t) is  the vertical displacement at the end of the failure zone due to 

the failure load: Equation (3.2) is wed to determine ar (It should be observed that the displacements 

due to the failure load are non-physical as they correspond to a situation in which material near the top 

and bottom crack faces of the crack occupies the same physical position. A physical solution is obtained 

when the displacement fields due to the external and failure loads are combined.) 

3.4 Algorithm for Vlscoelastic Fracture 

The following additional notation is adopted. 

f ue(t), U (Laf) = calculated nodal viscoelastic displacements due respectively to external 

load Le and to failure load Lf applied on an interval (-apO) at time t. 

Re RC U (t). U (Laf) = corresponding nodal reference elastic displacements. 

U,(-apt) = calculated vertical viscoelastic displacement at the end of the failure zone. 

U: = c r i t i d  crack opening displacement (COD) at (-aI.O), 

(3-4) 
cr 

g2(apt) = Uz(-af'f) - Uz . 

For the given geometry and crack length a value of af is chosen and cohesive forces Lf are applied to 

the corresponding failure zone. 

Step 1 : Stationary Crack 

Time steps t,,t,.. . . 

For time tl solve two viscoelastic problems. 

(a) with external load Lev to obtain ue(t,,af) 

f (b) with failure load Lp to obtain U (t,,af). 

In order to adjust the af use the numerical $olulurionr uRe and uRI of the corrsspndhg reference 

elastic problems to calculate 

J~~ , sRf 
Solve : &(aptl) = 0 for af 

With this value of af 

< Test : g (a t) = 0 . 
2 f '  > 

If g,(art) < 0, then increment the time and repeat the step. Otherwise go to Step 2. 



Step 2 : Crack Initiation 

From Step 1 we have that g2(af.tiJ < 0 5 g2(af.ti). 

Solve : 

(3.5) 

for the time tcr of crack initiation and the failure zone length at that time. Again we must point out 

that the evaluation of g, and g2 involves the determination of relevant viscoelastic and elastic 

displacement fields. When a solution of (3.5) is obtained. we reiet ti = tcr and proceed to Step 3. 

Step 3 : Crack Propagation 

Increment the crack length to ai 

Attempt to solve the system 

for the time ti a t  which the crack length ai is attained (assuming that it is), and the failure zone length 

at that time. The details of the manner in which the finite element mesh is moved to correspond to the 

new crack tip positions are given in [7]. 

Step 3 is repeated until a specified time is reached or until crack arrest or the onset of unstable 

crack growth is detected; this also is described in [7]. 

3.5 Results 

Numerical results have been obtained for a range of problems based on the above model and the 

geometry of Fig. 2b, see [7]. A finite element method in space based upon a mesh of eight-noded 

quadrilateral elements was used. In order to model the failure load and the displacement field in the 

failure zone adequately it was necessary to use local mesh refinement near the crack tip. 

Example problem 

E = 2.98, v = 0.49, w = 8, a = 4, H = 2 

~ ( t )  = c + (1-c)et, c = 

5 

L~ = L~ = ~ , ( t )  = 10- t, t < 0.1 

= lo6, t 3 0.1 

with Lf applied over the unit lengths ( 4 - 3 )  of the faces of the crack 

U: = 3 lo-' . 



As a result of the computations, we obtain at time t, = O.lsecs 

For this particular problem. with a constant load for time t > t,, the failure tone length af does not 

change whilst the crack is stationary but, due to the creep effect, U,(-apt) increases with t. Whether or 

not the crack moves depends on whether or not U,(-apt) evir reaches the critical COD of 3x10-'. With 

the particular parameters chosen we determine that the critical value is reached at time t=tcr=11.48secs. 

We then successively increase the length of the crack in increments of equal length and find that the 

time taken between each crack length becomes progressively smaller and eventually negative. The 

"negative" increment does not correspand to a valid physical solution but it is an indication that unstable 

crack growth has begun. 

Experiments with other values of C and a are described in [7]. 'The results of these experiments 

show, as we would expect, that the smaller the value of C, 0 < C < 1, the larger the crack length can be 

before the onset of unstable crack growth. (C = 0 corresponds to a purely viscous material, whilst C = 1 

corresponds to a purely elastic material.) 
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ABSTRACT 

Nonlinear elasto-plastic static and equivalent dynamic analyses of a box shaped generic enclosure 
subjected to an internal quasi-steady residual overpressure have been conducted using the ADINA 
finite element analysis code. The results indicate substantial deflection of the sidewalls and stress 
concentration effects at the corner joints between walls of the generic enclosure. Peak static deflection 
in excess of twice the wall thickness was predicted at both 38 and 54 MPa overpressures which are in 
satisfactory agreement with large deflection theory of plates. 

INTRODUCTION 

The deformation and stresses in a 3-D generic box shaped enclosure subjected to a residual quasi- 
static overpressure due to an internal rapid pressurization has been investigated in order to assess 
integrity and structural containment capability of the enclosure. Although the box shaped structure 
may be subjected to transient loads due to an internal explosive blast, only static and quasi-static 
residual overpressure have been considered due to long duration of this type of load after the transient 
phase resulting from lack of venting in containment structures. For an optimum design, the entire 
structure would experience large elastic-plastic deformation, thus providing a sink for the chemical 
energy of the explosive. 

The impetus for this study is based on earlier work on suppressive and containment structures 
by Huffington et a1 [l] and Gupta et a1 [2-61. In addition to an optimized hemispherical shell pro- 
tective structure, it was demonstrated by Gupta et a1 [2] that other designs such as the rectangular 
parallelipiped configuration consisting of plates and bar elements can provide adequate containment 
capability, provided the structure is reinforced in critical areas. Since detailed modeling of enclosures 
with reinforcement members and fasteners is rather cumbersome, it was decided to model a generic 
box configuration which retains the basic features of the geometrical and constraint characteristics of 
realistic enclosure structures. 



ESTIMATION OF RESIDUAL OVERPRESSURE 

Estimation of residual overpressure in a vented enclosure due to detonation of an equivalent 
charge weight of TNT [7] i s  given as a relationship for the resultant increase in peak pressure, AP, 
from Reference [8] as 

where, V = 0.18 m3, the internal volume of the enclosure, WE = 1.36 kg or 2.04 kg weight of the 
explosive charges, and h, = 13.5 KJ/g, the heat of combustion of TNT. 

PRESSURE DECAY AND BLOW-DOWN TIME 

An internally pressurized structure vents the overpressure to the surroundings through openings in 
its walls and corners, causing leakage and a slow decay to ambient conditions. A relationship between 
overpressure and venting time is given by Kinney and Sewell [9] based on a modified Friedlander 
exponential decay of overpressure in order that 

where, t ,  = venting time in ms, P = absolute pressure at t,, and A, = available vent area. 

The long term duration of the decay is essentially due to the relatively small vent area available for 
blow-down to ambient conditions, resulting in a very slow pressure decay to the external atmosphere. 
The blow-down time, t,, required to reduce the residual overpressure to ambient conditions obtained 
by Keenan et a1 [lo], based on the test firing of explosives in chambers with known vent areas and 
internal volumes, is given as 

The above equation is valid for A , / v ~ / ~  < 0.21, In the current design the ratio, A , / v ~ / ~  equals 
0.031 and the duration time for the quasi-steady pressure is approximately 100 ms. 

Due to the large duration time and a slow rate of decay, the pressure is assumed to be uniformly 
distributed and is statically applied internally. From a conservative viewpoint the uniformly distributed 
static pressure was assumed to remain constant at the peak residual overpressure which was calculated 
from Equation (1) to be approximately 38 MPa due to detonation of 1.3 kg TNT. Transient effects of 
the detonation wave arriving at and reflecting from the sidewalls were part of a seperate study and as 
such was not included in the current investigation. However, the transient effects upon the response of 
the sidewall arising from application of the quasi-steady reflected overpressure in the form of a ramp 
function was deemed to be of some interest and was included in this study. 



NUMERICAL MODELING 

The analysis was performed using the ADINA [11,12] nonlinear finite element analysis code. The 
finite element mesh for the generic box was generated with the aid of the GEN3D mesh generator 
program. Due to considerable reinforcement and relatively large thickness used in the design of the 
rear wall, it was assumed to be a rigid wall to which the other sidewalls were ideally clamped at the 
rear while the front wall was relatively unrestrained. 

The finite element mesh for the structure was generated with the aid of the GEN3D mesh generator 
program. The enclosure was modeled as an assembly 3-D brick elements uniformly spaced with the 
exception of the corner region where a refined mesh pattern consisting of two rows of brick elements 
were employed. A total' of 144 eight-noded elements with 350 corner nodes were used to model the 
entire structure. A 2 x 2 ~ 2  integration points layout scheme was selected in each element for stress 
aad strain computation. Corner radii have been simulated using an assemblage of piecewise linear 
segments along the inner surface which can be altered to represnt any daired corner radius. 

The static overpressure load was applied unformly at each node point on the inner surface in a 
direction normal to the wall surface. A 3.-D finite element mesh of the generic box configuration with 
element numbers is shown in isometric view in Figure 1. 

MATERIAL MODEL 

The primary construction material for the enclosure structure is a high strength steel alloy. Only 
the quasi-static material properties of the steel were considered and strain-rate effects were neglected, 
because these effects increase the structural resistance and thus reduce the total deformation. 

The unixial static stress-strain curve and its bilinear approximation for use in ADINA are shown 
in Figure 2. The initial portion of the loading curve is linear with the proportional limit at .52 GPa 
stress and 0.4 percent strain. Young's modulus and Poisson's ratio are assumed to be approximately 
205 GPa and 0.3 respectively, and the shear modulus is computed as 79 GPa. 

The constitutive model selected in ADINA is the elastic-plastic material model with isotropic 
hardening. The input material parameters were obtained by approximating the experimental behavior 
as a bilinear elasto-plastic loading curve indicated by the intermittent curve in Figure 2. This curve is 
followed by linear elastic-plastic unloading resulting in a polygonal approximation of the experimental 
data. 

TRANSIENT RESPONSE ANALYSIS 

In addition to static analysis, a transient response analysis of the generic enclosure structure was 
conducted using a ramp loading function with gradual loading and subsequent unloading. Inertia 
effects due to a high rate of loading were thus kept to a minimum. A forcing function with a peak 
load of the same magnitude as the quasi-steady residual overpressure was uniformly distributed over 
the entire inner surface of the box. The forcing function was thus tailored to be equivalent to the 
static load applied gradually in a linear manner during the loading as well as unloading phases. Once 
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the structure is fully unloaded, any residual permanent plastic deformation could be easily identified 
and compared to experimental measurements from the unloaded box. A plot of the applied force-time 
history is shown in Figure 3. 

A central-difference explicit time integration scheme and a lumped mass formulation in the AD- 
INA code were selected for the dynamic analysis. The time step used for the computational cycle was 
determined from the Courant stability criteria given as 

where, At,,,. is the minimum Courant stability time step, A1 is the distance between the two 
closest nodes-in the system, E is the modulus of elasticity, p is the density of the structural material 
and n is the number of time steps with which we wish fo  represent the stress wave in passing through 
the distance, Al. The value of At,,,,. was calculated to be approximately 4 microseconds. A value of 
4 was selected for n which resulted in an initial time step for the explicit time integration scheme of 
1.0 microsecond. 

RESULTS AND DISCUSSION 

Both nonlinear static and dynamic analyses of the internally pressurized generic box model and 
a comparison of responsei from the two cases will be described in this section. 

Nonlinear static analysis 

Although displacements along all three major cartesian coordinate directions are observed through- 
out the generic enclosure away from the ideally clamped edges, the resultant peak deformation is pre- 
dominantly associated with the sidewall region along a transverse thickness direction normal to the 
plate surface as shown in Figure 4. A magnification factor of .77 was selected for the deflection due to 
static pressure in the isometric configuration along the X-coordinate direction. The continuous lines 
represent isometric end view of the deformed box on which the initial configuration is superimposed as 
shown by intermittent lines. Computations using the ADINA Code indicate peak static deflections of 
approximately 6.0 and 8.6 cm at the inner surface at specified locations near the center of the sidewall 
for a generic box configuration with a uniform wall thickness of 2.54 cm corresponding to uniformly 
distributed applied pressure levels of approximately '38 MPa and 54 MPa, respectively. . 

A three-dimensional surface plot of the resultant static deflection of the sidewall with respect to 
the original configuration is shown in Figure 5. Peak deflection seems to occur at the center of the 
unclamped front edge of the sidewall. The opposite edge does not deflect due to the clamped boundary 
condition at the junction with the rear wall. However, high stress levels in excess of yield strength 
develop near the corners, possibly due to the existence of sharp corner radii at  the junction. The other 
two edges are connected to the top and bottom walls and exhibit some displacement near the front 
edge. A peak effective stress of approximately 940 MPa and an effective plastic strain of .0231 at an 
integration point near the inner corner radius are observed in element No. 4 at a junction with the top 
wall of the box. The corresponding effective stress in the corner region near the bottom wall is nearly 
900 MPa with an effective plastic strain of .015. These stresses may increase somewhat with further 
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refinement of the model and are still the result of high stress concentration effects near the sharp 
corner radius. These levels could be reduced considerably by increasing the radius and consequent 
smoothening of the corner. Since both peak stress levels and displacements occur at  the front edge, 
additional stiffeners and reinforcements in the corner region and in the sidewall near the front face are 
strongly recommended. 

Nonlinear dynamic analysis 

When the internal pressure is applied gradually 'in a time-dependent manner and is retained upon 
the structure for a sufficiently long time, oscillations in predicted deflection levels are observed. This 
results in overshooting followed by underprediction when compared with static predictions as shown 
in Figure 6. In this figure a delay of 1.3 ms in attaining the peak response is observed due to system 
inertia. However, at  increased response times, oscillation peaks appear to diminish gradually until the 
structure is fully unloaded. 

The transient response behavior of the enclosure structure as depic.ted in the isometric plots of 
resultant deflection in Figures 7-10 was monitored at response times between 1.1 and 3.5 ms at $00 
microseconds interval. Deflection of the wall in a transverse thickness direction appears to diminish 
in magnitude beyond 1.5 ms and attains a minimum at 2.7 ms after which the deflection starts to 
increase at  a rather slow rate. Figures 11-14 are a set of 3-D surface plots of the sidewall. These 
figures describe the deformation of the entire sidewall from 500 microseconds to 2.9 ms at an interval 
of 800 microseconds. Location of peak deflection and stress levels for the dynamic case coincide with 
the static data as expected due to identical geometry and equivalent loading data assumed for the 
dynamic model of the generic enclosure structure. The computation was terminated 3.5 ms because 
the response behavior appeared to be dominated by elastic oscillations without additional plastic 
deformation or plastic strain accumulation indicating the onset of steady state conditions. 

CONCLUDING REMARKS 

A static nonlinear large deflection analysis using ADINA is capable of determining the structural 
effects due to an internal blast inside a suppressive enclosure or containment structure. However, 
if the loading is applied dynamically at  a high rate as for an explosively loaded hollow structure of 
a generic box configuration, it is evident from this investigation that the peak transient deflection 
can easily exceed the peak static deflection by a factor of 1.6 or more for a ramp loading function. 
For a step loading function the ratio of peak observed deflection between the static and the dynamic 
case is expected to be even higher due to large initial oscillations of the deflection curve. To ensure 
safe containment with an allowable margin of safety, the factor should be increased to 2.0 which is 
equivalent to doubling the quasi-static residual overpressure load. The resulting stress and deflection 
levels are large enough to require additional stiffening of the enclosure near the front as well as rear 
end of the sidewall accompanied by large increase in radius at the corner junctions of the box. 

Implementation of structural damping in ADINA during the unloading phase could facilitate 
determination of residual plastic strains and deflections at  critical locatioris within the enclosure. These 
results could then be effectively compared with available experimental measurements of residual plastic 
deformation of the sidewall after the occurrence of an internal blast due to detonation of an explosive 
inside a containment structure. 
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F i g .  8. Isometric view of the resultant deflection at . 6  
magnification at 1.9 rns. due to transient load. 
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Fig. 9. Isometric view of the resultant deflection at . 6  
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Fig- 10. Isometric view of the resultant deflection a= -6  
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F i g .  11, Three-dimensional surface p l o t  of the resultant sidewall 
deflection at 3.45 magnification at .5,ms. 

F i g .  12. Three-dimensional surface plot of  . t h e  sidewall~deflection 
ar 3.45 magnification a t  1.3 ms. due to transient load. 
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Fig. 13. Three-dimensional surface p l o t  of the sidewall  d e f l e c t i o n  
at 4 . 5 5  magnification at 2.1 m s .  due to transient load 

----INITIAL CONFIGURATION 
D E F O R M E D  CONFIGU-RATION 

F ig .  1 4 -  Three-dimensional surface plot of the sidewall def lec t ion  
at 4.55 magnification at 2.9 ms. due to transient load. 
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Calculation of Elastic-Plastic Wave Propagation 
on the Connection Machine 

Mark A. Olson* and Kent D. Kimseyt 

US Army Ballistic Research Laboratory 
Aberdeen Proving Ground, Maryland 21 005-5006 

Abstract. This paper describes the parallel algorithms and data structures for implementing a 2-D 
multi-material kernel of the wave-propagation code HULL on a Connection Machine. Computational 
performance is illustrated for a rod-plate impact problem with material strength described through an elastic- 
perfectly plastic formulation. The hydrodynamic behavior of materials is modeled via the gamma law and 
Mie-Gruneisen equations of state. 

1. Introduction. The emergence of massively parallel computers, such as the 
present generation of hypercube machines, is having a significant influence on the 
development and implementation of computational models for describing physical 
phenomena. A pressing concern in the construction of parallel applications is the 
mapping of algorithms onto scalable multiprocessors which can be scaled to the 
teraflop performance range. 

An important class of problems where the principal limitation is CPU-performance is 
the large-scale numerical solution of partial differential equations applied to shock 
physics modeling in two and three dimensions. The successful utilization of parallel 
computers for these problems requires the adaptati0.n of existing sequential algorithms 
into reliable and robust parallel algorithms. 

This paper presents a brief overview of the parallel algorithms and data structures 
for implementing a two-dimensional multi-material kernel of the wave-propagation 
code HULL on a Connection Machine. Computational performance is illustrated for a 
prototypical rod-plate impact problem. Particular detail is given to computational 
methodology, performance characteristics, and algorithm scalability. Complementary 
parallel computing efforts for recently developed wave-propagation codes are being 
conducted by Sandia National Laboratories1 and Los Alamos National Laboratory. 2 

2. The Connection Machine. The Connection Machine CM-23 is a massively 
data-parallel computer configured with a maximum of 64K (216) bit-serial processors 
interconnected in a boolean n-cube topology. Each processor is equipped with 128 

* ~ r m y  High Performance Computing Research CenterIComputer Sciences Corporation supported by US 
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Kbytes of memory giving a total memory capacity of 8 Gbytes. The processors are 
arranged in hardware with 16 processors to a chip, and each pair of chips (referred to 
as a node) shares a Weitek floating-point accelerator each having 64-bit precision 
arithmetic. 

Floating point computations on the CM-2 are implemented via two models: fieldwise 
and slicewise. In the fieldwise model, the atomic unit is the processing element and 
the storage of a 64-bit word is allocated in 64 sequential bits of a physical processor's 
memory. In the slicewise model, the atomic unit is the processing node and a word is 
stored in a 64-bit slice across the memories of the 64 processors in two nodes. The 
advantage of the slicewise model, is that a 64K-processor CM-2 becomes 1024 
double-precision floating point nodes networked in a 12-cube topology with two 
communication channels between connected nodes. 

The granularity of the CM-2 is reflected in the application of virtual sets. For the 
fieldwise model this refers to the formation of virtual processors (VPs) and for the 
slicewise model the abstraction of virtual grids. A virtual processor is the 
segmentation of the local memory of each processor, thus enabling the CM-2 to 
simulate a system with more physical processors. In contrast to VPs, a virtual grid 
does not exist as a formal object in CM memory, but provides a useful way for 
describing the allocated memory across processing nodes. The run-time system 
determines allocated memory within the processing elements and maps declared 
array dimensions onto the virtual grids. The execution of instructions by the virtual sets 
is performed by time-slicing the physical processing units. 

The CM-2 processing units operate in a SlMD (Single-Instruction Multiple-Data) 
mode, meaning all processors receive the same instruction stream on each cycle. 
Conditional operations, i.e. masks, permit any subset of the processors to be 
deselected such that the instruction will only be performed by those processors in the 
selected set. The instruction stream is broadcast by sequencers which are controlled 
by a conventional front-end machine. The front-end machine supports the operating 
and programming environment. Current languages supported include CM-Fortran, C*, 
*Lisp, and Paris. 

lnterprocessor communication is carried out using two mechanisms referred to as 
the NEWS (North-East-West-South) grid and router. The addressing of a virtual 
processor is based on a Gray coded grid which provides an n-bit cube address, where 
n I 16, for specifying the location of the processor on an n-dimensional- hypercube. 
The NEWS addressing scheme allows processors to pass data according to a 
structured rectangular grid. The router on the other hand, is the more general 
mechanism which allows any virtual processor to communicate with any other virtual 
processor on the hypercube. In addition, the router allows the local memories of the 
processors to be treated-as a single large shared memory. The application of the 
NEWS grid and router for a given problem depends on the data pattern which may 
vary as a function of time. 



3. The HULL Eulerian Hydrocode. -The HULL code4 is a multi-dimensional 
and multi-material Eulerian wave-propagation code that numerically solves the partial 
differential equations of continuum mechanics. Explicit terms for heat conduction and 
viscous effects are not included. The equations solved in aotisymmetric cylindrical 
coordinates for 2-D are: 

where p is the material density, x and y are the radial and axial coordinates, 
respectively, u and v are the corresponding radial and axial velocity components, T 
is the stress tensor, E is the total specific energy, and g is gravitational body force. 

Equations (3.1) through (3.4) are solved on a finite-difference rectangular mesh 
composed of ,discrete spatial intervals Axi, AN in the radial and axial coordinates. 
The solution is advanced explicitly from the initial conditions by discrete time steps, 
At., and is defined on the mesh (xi,yi,tn) where each of the state variables c(x,y,t) in 

the solution space is defined by {I= {(xi,yi,tn). 

State variables are defined at the geometric center of each cell. Cell boundary 
values are interpolated through one computational cycle via cell-centered values from 
nearest-neighbor cells. These boundary values are then advanced through one-half 
time step using cell-center to cell-center gradients. This step is then followed by a full 
ti me step using half-time advanced cell-boundary gradients. Lagrangian conservation 
Eqs. (3.1) - (3.4) are utilized in this time update. To maintain the original Eulerian 
mesh, material is advected from one cell to another via a first-order donor cell 
algorithm with a heuristic multi-material diffusion limiter to preserve material interfaces. 

Material models in HULL include elastic-perfectly plastic with von Mises yield 
criterion as well as temperature and work hardening effects. The Mie-Gruneisen 
equation-of-state is used to model solids and liquids, and the gamma law is used to 
model gases. Explosives are modeled via the Jones-Wilkins-Lee equation-of-state. 
Material failure models include maximum principal stress, maximum principal strain, 
and the Hancock-Mackenzie triaxial failure model. 



Figure 1 : CM-2 computational grid. 

4. Parallel implementatlon of HULL. Implementation complexity of adapting 
the HULL code to a parallel platform depends on several factors-namely, the degree 
of parallelism, granularity and scalability, interprocessor communication, and I10 
demands. To achieve high performance, efficient data parallelism must be 
constructed which maximizes processor load and streamlines interprocessor 
communication. 

4.1 CM-2 data structure. The algorithmic framework for mapping the HULL data 
structure onto the CM-2 architecture lies in the utilization of both the canonical layout 
of arrays and the use of the compiler array directive LAYOUT.5 

Hydrodynamic variable arrays for pressure, velocity, stresses, and strains are 
canonically allocated one element per virtual processors with each conformable array 
being placed in the same virtual set. Array dimensions are defined in 2-0 as 
(O:nx,O:ny), where nx and ny are the number of hydrodynamic computational cells in 
the x and y spatial directions, respectively. Each array is buffered with fictitious cells 
(see Figure 1) containing the appropriate boundary conditions. Boundary conditions 
accounted for include both transmissive and reflective. 

Fictitious cells are incorporated into the mesh to pedorm uniform computations on all 
active cells at all times independent of whether the cells are internal or boundary cells. 
This approach maximizes processor utilization during a clock cycle for the Lagrangian 
and advection computations, thereby decreasing the overall computational grind time. 
The boundary conditions for the top and right are carried out in parallel while the 
densities of the fictitious cells are being numerically updated. 



Figure 2: Data-parallel hydrodynamic variable arrays. 

All grid axes for the hydrodynamic variable arrays are NEWS-ordered (see Figure 2). 
Elemental operations between the arrays in a virtual set require no interprocessor 
communication and dimensional shifts on cells, as required in finite-difference 
schemes, are performed with NEWS communication. 

The compiler directive LAYOUT allows the programmer to specify the axis ordering 
and weights of the virtual set in which an array is allocated. An important application 
of LAYOUT is for arrays with mixed data-parallel (NEWS-ordered) dimensions and 
serial dimensions. An example is the mass array shown in Figure 3. Elements are 
given by xm( :SERIAL, :NEWS, ;NEWS ), where the SERIAL dimensions span the 
number of materials (denoted by nm) and NEWS the mesh space. Computations over 
the serial dimensions are performed via the front-end and data-parallel dimensions 
are performed on the CM-2. Similar mixed arrays are constructed for material volumes 
and energies. Each mixed array can be viewed as an indexed collection, i.8. a 
material slice, of data-parallel arrays. 

4.2 Lagrangian computations. - The cornerstone in reprogramming the 
Lagrangian step for SlMD operations lies in the functionality of the NEWS 
communication. Finitedifference schemes are implemented via the application of 
intrinsic shift functions performed on data-parallel arrays. 

As an example, the fin'itedifference representation for the u-component velocity 
computed at the cell boundary i+1/2 at time t =P is given by: 
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Figure 3: Data-parallel material-indexed hydrodynamic variable arrays. 

Serial Lagrangian 

Data-Parallel Lagrangian 

The key point is the replacement of sequential operations on array elements ~ i " j ,  ~5 
with the global uniform operation on data-parallel arrays pnl un. The circular shift, 
cshift(pn12.1), has the effect of shifting the data-parallel array pn to the left by one 
position. These operations are one of the most efficient CM-Fortran operations due to 
the direct mapping onto the NEWS communication grid. (A caveat is that the grid 
dimensions must be a power of two for fieldwise and multiples of four for slicewise.) 

The data-parallel solution forth@ Lagrangian Eqs. (3.2) - (3.4) with the assumption At 
= At. is given by: 



where Pn and 8; for (p=x ,y ;h=xy )  are data-parallel-arrays for pressure and stress 

deviator, respectively, 6"s the spatial derivative 

with 5G2 defined as the spatial-centered term, dim = 1,2 depending on if jl = x or  y, 

and = cshift(h,dim,l ) - h. 

~ata-parallel expressions for ~ 7 2 ' ~ ~  are given by 

for the radial direction and 

for the axial direction. The spatial-centered pressures of Eqs. (4.2.6) and (4.2.7) are 
defined by 

with dim depending on either the radial or axial direction. The (pcgK12 term in Eqs. 
(4.2.6) and (4.2.7), where cs is the isentropic sound speed, is given by 

(PC:);,~ = mi n[locs2r, ~ ~ h i ~ ( ~ c : r , d i ~ ,  1 11 
with (pC$ computed via the equation-of-state. 



Data-parallel time advanced velocities in Eq. (4.2.5) are computed via the following 
expressions: 

where ufi2 is given by Eq. (4.2.2) and vfi2 has an analogous form. 

Similar computations are carried out for the stress deviators. The numerical solution 
in a data-parallel format is obtained explicitly by 

where 

with VF defined as a data-parallel array describing the fractional volume of solid in a 
given computational cell. The stress deviators are numerically updated and are 
subject to the Von Mises yield criterion. 

The application of the boundary conditions for the Lagrangian and advection 
computations is implemented through the use of data-parallel selector arrays 
containing values of 1.0 for selecting computational cells and values of 0.0 for 
deselecting cells. For example, the left reflective boundary condition for urI2 given by 
Eq. (4.2.2) requires the left fictitious cells to hold the temporary value of uC2 = 0.0. 
This is accomplished by multiply the data-parallel expression for uTI2 by an array 
containing 1.0 for all active cells and 0.0 for the left fictitious cells. Similar selector 
arrays are employed for implementing analogous boundary conditions. 

4.3 Equation-of-state computations. Equation-of-state (EOS) calculations are 
in general good candidates for the SlMD data parallelism of the CM-2. They are 
characterized as being free of both interprocessor communication and grid boundary 
conditions. However, for multi-material problems EOS calculations are inherently 
MlMD (Multiple-Instructions Multiple-Data) type operations. The MlMD nature is due to 
the nonhomogeneity of the computations derived from materials with different EOS 
formulations (e.g., gamma law and Mie-Gruneisen) and different material parameters 
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Figure 4: HULL EOS computations. 

characterizing the same EOS (e.g., steel and RHA). Moreover, mixed material cells, 
which require an iterative procedure to equilibrate the pressure for each material, 
induce a MlMD style of programming. Figure 4 depicts schematically the general 
condition for computing the EOS for a three-material simulation. 

The most direct method for computing pressures employing analytic EOS 
expressions of the form p = p{p , I } ,  where I is the internal energy, is one which 
calculates in parallel cell pressures (partial pressures for mixed material cells) as part 
of a sequential loop over all materials, The calculated result is placed in a data- 
parallel scratch array pp(im,:,:), where im is the material index. A logical mask is then 
use to segregate pure and mixed cells, with mixed cells requiring further calculations. 

The problem with this method is twofold. First, there is a nm-factor increase in the set 
of required computations due to the sequential loop over the materials rather than one 
data-parallel SlMD computation. This can be somewhat relaxed for materials with 
identical EOS formulations by introducing data-parallel material property arrays for 
each material at each VP ( or virtual grid). For virtual sets with identical materials one 
array would be required. Unfortunately this determination is dynamic and not static. 

The second problem deals with mixed material cells. Each mixed cell under goes a 
volume iteration in an effort to compute an equilibrium pressure. During this iteration, 
the VPs ( or virtual grids), which hold pure cells, are conditionally masked such that 
they are inactive. As the number of iterations and mixed cells grows, the relative cycle 
throughput of SIMD operations decreases. Similar problems occur during the 
advection phase. The elimination of these problems require asynchronous constructs 
and are not supported in a SIMD platform. 

The SlMD methodology for computing material strength is similar to that for 
computing pressures. Scratch data-parallel arrays are employed to store temporary 
values of the shear modulus, yield strength, stress deviators, etc. for both pure and 



mixed material cells during volume iterations. Upon convergence all cell values are 
reloaded into their respective hydrodynamic variable arrays. 

4.4 Advection computations. As mentione-d above, HULL advects materials 
based on a first-order donor cell method. The calculation of the relative transport 
weights for apportioning the volume flux is carried out using the intrinsic cshift function 
for computing the fractional volumes in the receiver and upstream cells. A diffusion 
limiter algorithm is employed in an attempt to unmix mixed material cells. 

The material slices for computing transport terms are stored in a data-parallel array 
hs( :SERIAL, :SERIAL, :NEWS, :NEWS), where the SERIAL dimensions cover the 
number of materials and spatial flux directions (4 in 2-D), respectively. The NEWS- 
ordered dimensions span the mesh space and are conformable with the advected 
hydrodynamic variable arrays. Volume iterations are required to reduce the flux of 
overemptied materials. Convergence is checked by monitoring a data-parallel array 
consisting of ones and zeros. 

The final remapping step is transparent in its implementation using simple grid finite- 
difference quantities computed via cshift operations. For example, the volume of 
material n, denoted by the data-parallel arrayV,, is advected to the original fixed 
Eulerian mesh 

where eVn is the Eulerian volume and the transporting volume is 

with An,l defined as the transport fraction for each material in particular direction 1. 
Active cells are advected while fictitious cells along with inactive cells are masked. 

5. Application and performance results. The application we report here as 
an illustration of the computational performance is a 2-D multi-material computation of 
a steel rod impacting rolled-homogeneous armor (RHA) at a striking velocity of 3 
kmlsec (see Figure 5). The computational geometry is such that the length-to-diameter 
ratio of the steel rod was set to five. Material strength was implemented via an elastic- 
perfectly plastic formulation with the hydrodynamic behavior of materials modeled 
using the gamma law and Mie-Gruneisen equations of state. 

Calculations were performed on a 16K segment of a 32K-processor CM-2 located at 
the University of Minnesota. The total memory capacity is 4 Gbytes with a Datavault of 
10 Gbytes. The front-end is a VAX 6420 with 64 Mbytes of memory running the 



Figure 5: HULL application on the CM-2. 

ULTRIX operating system. Reprogramming of the HULL code was carried out using 
CM-Fortran with double-precision arithmetic implemented via the slicewise compiler. 

Results for the grind times (microsec/cell/cycle) computed on the CM-2 for various 
mesh sites along with the corresponding CRAY-2 single processor results are 
presented in Table I. 

TABLE I. HULL hydrocode performance results on the CM-2.a 

Grid Size VG lengthb efficiencyc grind timed grind timed 

aCM-Fortran with double precision using slicewise compiler on a 16K CM-2. 
bVG (virtual grid) length = number of grid pointslnumber of FPUs. 
=efficiency = CM-2 execution timelCM-2 elapsed time. 
dgrind time = p-sec/celVcycle. 



A comparison of the computed grind times shows the 16K-processor CM-2 
performance is faster than a CRAY-2 processor. For a 51 2x51 2 mesh the CM-2 is 
twelve times faster. Note that the grind times for a fixed CM-2 scale inversely and 
nonlinearly with the virtual grid length. 

The observed improvement in efficiency as a function of data set site is due to the 
amortization of the start-up overhead over large blocks of computations and to some of 
the comm'unication~occurring on the same chip. The overall SlMD parallelism 
performance of the HULL code is limited by the equation-of-state solution procedure 
employed in solving for mixed cells. Recently developed EOS methods7 appear to be 
more amenable to the data parallelism of the CM-2. 

6. Conclusions. In this paper, we have presented the initial step toward the 
adaptation of the, HULL code for the Connection Machine. Results for a parallel 
implementation of a prototypical rod-plate impact calculation have been shown to be 
faster than the CRAY-2 .results. Extrapolating the CM-2 grind times to a full 64K- 
processor machine, suggests that this machine is capable of fifty times the 
performance of the CRAY-2 for executing the HULL code. However, performance is 
limited by the EOS calculation for the multi-material mixed cells. 
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ABSTRACT. Many interesting aspects of mathematical and 
numerical modeling come to bear in solving dynamic structural 
response problems concerning gun launches of projectiles. A 
cooperative effort between BRL and LANL has been underway for 
several years now on 3 0  transient modeling of tank gun-launched 
saboted-rod kinetic energy (KE) projectiles. The focus of this 
work has been on numerical/experimental investigations to better 
understand the transient behavior of KE rounds during in-bore 
travel. We believe that improved knowledge of this behavior will 
lead to improved designs of KE projectiles and improve accuracy 
on targets. Because formal mathematical solutions of such complex 
large-scale modeling problems are impractical, approximate but 
accurate solutions are being sought by means of the Finite 
Element (FE) Method. Numerical simulations are being carried out 
with the DYNA2Dt DYNA3D, and PRONT03D nonlinear transient FE 
codes, together with their respective pre- and post-processor 
software. Calculations have been successfully carried out with a 
network in which engineering work stations are used at the local 
level, and Cray XMP and YMP supercomputers are used for 
heavy-duty computational work. To the authors' knowledge, this is 
the first such comprehensive use of full transient 2D and 3D FE 
simulation techniques to model the interior ballistic phase of KE 
round launches. 

INTRODUCTION. In this paper we illustrate the use of advanced 
state-of-the-art structural analysis tools such as the explicit 
nonlinear 2D and 3D finite element (FE) codes DYNA2D (Hallquist 
1984), DYNA3D (Hallquist and Benson 1986), and PRONT03D (Taylor 
and Flanagan 1989) to simulate the transient in-bore structural 
responses of saboted-rod kinetic energy (KE) projectiles. In 
light of the many finite element tools which are available for 
quasistatic analysis of projectiles, one may well ask: Why 
transient analyses? In years past, of course, the main obstacle 
to performing transient FE analyses on the problem at hand was 
the lack of supercomputing resources; this situation has been 
resolved with the ready availability of Cray-class machines. We 
can now truly concentrate on the physical reasons which justify 
fully transient modeling: 



o Quasistatic analyses of in-bore problems yield at best 
approximate results: This has long been recognized but the lack 
of transient analysis resources prevented progress; 

o Wave propagation effects: In real guns, pressure waves due to 
combustion processes are entirely possible; solid phase impacts 
of propellant grains on projectile surfaces can occur; 

o Material strain rate- and large strain effects: Rotating bands 
and obturators undergo strain rates as high as 1000/second; 
strains of order 200% can occur; 

o Response to an imperfect world: Tube wear and erosion effects 
can lead to torsional impulse (in artillery shells, this is a 
sudden torque applied to the projectile at instant of barrel 
engagement); for KE projectiles variations in bore profile 
straightness cause balloting and tube vibration; asymmetries in 
KE sabot designs are important; 

o Shot exit: Rapid unloading effects can occur at muzzle exit as 
the gun gas pressure suddenly drops off. 

We have established a hierarchy of computer models to analyze the 
problems just described. For example, the RASCAL (Erline, et al. 
1990)and SHOGUN (Hopkins 1990) gun dynamics models are beam 
element-based quasi-2D and quasi-3D codes which we use for 
preliminary studies or "quick lookst1 at KE projectile/barrel 
interaction problems. DYNA2D and NIKE2D are explicit and implicit 
continuum FE codes, respectively, useful for analyzing the 
structural response and integrity of projectiles when subjected 
to axisymmetric loadings. DYNA2D is by far the more useful since 
it has good transient analysis capabilities. NIKEZD, because of 
its implicit formulation, runs much Easter than DYNA2D, but lacks 
the capability to handle highly transient loads. We use N I K E 2 D  
primarily for problem check-out and certain specialized 
calculations. BRL has coupled DYNA2D with in-house interior 
ballistic burn codes for more accurate modeling of the actual 
interaction of combustion physics with projectile motion. This 
coupling of these models has recently allowed study of more 
difficult interior problems such as the dynamic strain 
amplification problem in gun barrels, a resonance condition in 
the barrel muzzle region attributable to a pressure front moving 
rapidly downbore. For 3 D  transient work, w e  are using the 
explicit DYNA3D (at both BRL and LANL) and PRONT03D (at LANL 
only) codes. 

Figure 1 shows schematically the mechanical components of a 
KE projectile configuration used for defeat of tank armor, in 
this case the 120-mm M829 design. The Lower portion of the Figure 
shows the DYNA2D FE grid we use at BRL for 2 D  calculations. 
Figure 2 shows the corresponding DYNA3D grid used at LANL for 3D 
calculations. Only since 1988 has there been a concerted effort 
to model the entire 3D in-bore travel phase, including 
barrel/projectile interactions. This has been made possible by 



the availability of supercomputers such as the @RAY XMP and CRAY 
YMP. We hasten to add, however, that even with @RAY-class 
machines, some aspects of the 3D transient interior ballistic 
problem will severely tax current computing capabilities. We also 
point out that reliance on transient analyses in the present 
context is not necessarily an absolute must, particularly in 
early design studies of a new projectile concept. Although the 
five to ten millisecond time span of the loadings is short 
compared to everyday experience, a quasi-static stress analysis 
conducted at peak pressure conditions will often suffice for 
wfirst-cutl@ design purposes. 

The ultimate goal of the present 3D modeling effort is to 
reduce the dispersion of KE rounds on targets. We believe that 
the key to achieving this goal is to understand, and thus be in a 
position to control, the perturbing influences which operate on 
the gun-projectile combination during the in-bore phase of the 
firing cycle. Ultimately it is the vibration imparted to the 
sabot/rod combination during launch that is of concern. The sabot 
(which is discarded soon after muzzle exit) is composed of three 
or four lengthwise petals and serves to: (1) Provide axial and 
lateral support to the rod during launch; (2) seal off the high 
pressure gun gases behind the projectile; and (3) Grip the 
grooved surface of the rod and transfer axial forces to it across 
the sabot/rod interface during in-bore acceleration. To maximize 
rod velocity, the parasitic weight of the sabot should be 
minimized, but not at the expense of sabot strength. 

MODELING CONSIDERATIONS AND METHODS. No real gun barrel is ever 
perfectly straight or perfectly rigid, thus even if rigidly 
clamped against all lateral motion, the KE projectile travels a 
slightly curved path, but at very high velocity, and is set in 
vibratory motion. In our 120-mm simulations the barrel is 
smooth-bore, is cantilevered at the breech end, and is fixed 
against axial recoil. Obviously, this is a rather simplified 
model of a real tank situation where complex recoil motions, 
breech block CG offsets (which cause overturning moments to be 
imposed on the structure), rigid body rotations of the 
barrel/breech assembly about the trunnions, and rigid body 
motions of the entire tank body are possible. The focus of the 
present work is limited to understanding cause-effect 
relationships between muzzle exit motions of the projectile and 
barrel/projectile interactions during in-bore travel. 

The main sources of deviations in barrel straightness are 
gravity droop and inherent variations. Inherent variations 
include machining irregularities, erosion and wear seen during 
service, and thermoelastic deformations due to nonuniform 
patterns of heating and cooling in the structure at the time of 
firing. It should be kept in mind that inherent variations can 
vary considerably in a population of barrels. Gravity droop 
profiles are essentially constant over a population of 
similar-geometry barrels and can be computed quasistatically with 
great accuracy with FE codes such as ABAQUS (Hibbett, et al. 
1985). The inherent centerline straightness is unique for each 



barrel and must be determined by field measurements. 

Unlike artillery shells which are rigid and therefore 
. essentially immune to lateral loads, large length/diameter ration 
KE rounds are light and flexible and thus susceptible to lateral 
loads. A rough estimate of the peak lateral acceleration for a 
typical KE round is in the range 500-5000g0s. Our experience has 
been that to obtain more refined estimates than this requires 
accurate modeling of the specific barrel, bore straightness 
profile, and projectile. The RASCAL and SHOGUN beam codes are 
useful for this purpose. The lateral loading can thus not be 
ignored in launch survival of KE rounds. Moreover, we believe the 
dynamic motion imparted to the projectile in-bore by these 
lateral loads influences dispersion. 

BRIEF REVIEW OF 2D TWSIENT IN-BORE RESULTS. The DYNA2D FE code, 
running on a Cray XMP/48 at BRL, was used to model the dynamic 2D 
response of the 120-mm configuration of Figure 1. All-elastic 
material properties were assumed for the compondnts. No barrel 
was included and no sliding interfaces between parts were 
included ( i . e . ,  the sabot was "weldedw to the rod) and no 
relative motion of the sabot petals was allowed. Also the plastic 
obturator was not modeled, although an estimated pressure history 
due to obturator/barrel engagement was applied. Figure 3 shows 
the base pressure-time history. Axial stress responses at the 
points A, B, C are shown in Figure 4 to underscore two important 
points: (1) The axial stress is the dominant stress component; 
and (2) A sign change in the axial stress (tension to 
compression) occurs within the rod. Once again, 2D transient 
analyses are useful for investigating structural integrity of the 
projectile during early in-bore motion, i.e., up until the time 
of peak pressure. During this tine projectile travel and velocity 
remain relatively small so that 3D lateral motions due to 
interactions with the barrel are also small. 

3D PROBLEMS (GUN ACCURACY-RELATED WORK). The second and third 
authors have carried out extensive 3D numerical modeling efforts 
on both 105-mm and 120-mm tank gun problems. The second author 
(D. Rabern) was the first to demonstrate the feasibility of 
accurately modeling with DYNA3D the projectile/barrel 
interactions for a 120-mm M829 KE projectile. This work also 
included extensive experimental firings to get data on the 
in-bore response of the M829 for model validation studies. 
Unfortunately, only the briefest coverage can be given here of 
the enormous amount of 3D modeling work that has been done in 
the 120-mm arena, hence reference is made to the PhD thesis and 
1;ANL reports (Rabern 1988, 1989, 1991) for more complete 
discussions. Comparisons of predicted and X-ray photographed rod 
profiles at the same barrel location were carried out to validate 
the 30 modeling procedures. In early stages of this work, the 
DYNA3D modeling exploited vertical symmetry as shown in the 
DYNA3D mesh of Figure 2; more recently this restriction was 
.relaxed and full 360-degree grids have been used, both with the 
DYNA3D and PRONT03D calculations. Mesh sensitivity studies with 



the half-symmetry model indicated that at least 5000 elements 
(7000 nodes) were needed for accurate displacement data; run 
times on the LANL Cray XMP/416 were on the order of 6 CPU hours. 
The 360-degree grids required approximately 11000 elements and 
14000 nodes; and here the runs were made on a Cray YMP, requiring 
approximately 9-15 CPU hours. Nonlinear material properties were 
used and sliding surfaces were defined between the barrel and 
projectileland between sabot petals. No sliding surfaces were 
defined between the sabot and rod. 

As may be evident after careful inspection of the grid in 
Figure 2, mesh fineness compromises had to made as compared to 
the 2D mesh of Figure 1. Namely, a relatively coarse 3D barrel 
mesh was used and a medium-coarse mesh for the projectile. Table 
1 summarizes comparisons of DYNA3D-computed and experimental rod 
tip and tail lateral displacements at two locations along the 
barrel for the M829 fired out of a barrel model with a realistic 
bore straightness profile. In these calculations, and for two 
other M829 sabot design variations, the displacements were within 
5-10% of experimental values;. comparable agreement of 
computed/experimental values was obtained with full 360-degree 
models. The good agreement achieved here validates the 3D finite 
element modeling procedures we have developed for handling 
transient barrel/projectile interaction problems. This means that 
we have capabilities to model and investigate cause-and-effect 
relationships of in-bore KE round dynamics upon dispersion. 

During 1990, in response to an internal BRL request, the 
third author (S. Wilkerson) initiated studies of a new sabot 
concept for the 105-mrn XM900 projectile. 3D FE models of both the 
existing XI4900 sabot design (building on previous modeling work 
done at LANL) and a new webbed sabot configuration were required. 
Aside from the complex modeling task involved in setting up the 
projectile models, the rifled 105-mm barrel had to be handled. 
This was accomplished by giving the barrel mesh the same twist 
angle as that of the rifling in the actual barrel; no attempt was 
made to model the details of the rifling lands and grooves. 
Figure 5 shows the straight and twisted barrel grids. Figure 6 
shows the computational grids for the standard and webbed sabot 
design projectiles. 

Of particular interest in the 105-mm studies was the 
extraction of data on rigid body motions of the projectile at 
muzzle exit. The purpose of the webbed sabot design was to 
increase the lateral stiffness of the projectile, but staying as 
close as possible to the XI4900 weight (See Figure 7). By 
increasing lateral stiffness, -perhaps the projectile's 
sensitivity to lateral forces in-bore could be mitigated. By 
reducing lateral vibration in-bore, then magnitudes of the 
affected jump components at muzzle exit could be reduced and thus 
dispersion on target also reduced. Plostins, et al. (1989) have 
identified (1) muzzle pointing angle, (2) muzzle crossing 
velocity, and (3) projectile CG jump at muzzle as the major 
contributions to dispersion attributable to in-bore causes. 



Two important results were also found from the 3D dynamic 
analysis of'the XI4900 projectile. The first was that the bending 
of the projectile can be significant depending mainly on the 
design of the sabot/long rod system. For example, using von Mises 
stress as a criteria of how close to yielding the projectile is 
during its acceleration down the gun tube, areas of concern can 
be easily identified. As it were, an axisymmetric analysis of 
the projectile will identify these. areas of high stress with a 
fair degree of accuracy. However, an axisymmetric analysis does 
not take into account the projectiles traverse loading during its 
in bore travel. Such loading as introduced by an unbalanced 
breech, barrel droop due to gravity, tube heating, or bent gun 
tubes (Gun tubes are never perfectly straight) are not considered 
in an axisymmetric analysis. Therefore, when an equivalent 3D 
analysis is compared with an axisymmetric computation, the 
results from the three dimensional calculation reveal details 
which can not otherwise be obtained. These type of results are 
summarized in Figure 8. where it can be seen that bending in the 
projectile can lead to higher stresses than would have been 
predicted by an equivalent axisymmetric analysis. 

A second important result that can be found from the 3D 
analysis is the state of the projectiles traverse motion. 
Questions like,. how fast is the projectile moving downward or 
outward and what is the projectiles rigid body motion, can now be 



addressed. Moreover, by changing the initial conditions 
slightly, let say cocking one projectile slightly up and one 
down, variations in the state of the projectile's rigid body 
motion at shot exit have been observed. In reality a projectile 
has some clearances between the front bell and gun tube to ease 
needed loading and unloading operations. This small clearance 
then allows the projectile to seat slightly off line with the 
centerline of the gun tube and the projectiles alignment is more 
or less a random function of loading. By using 3D transient 
analysis techniques the differences between these initial seating 
conditions can be measured in terms of projectile velocity 
variations at shot exit. Therefore, these variations in velocity 
can be equated directly to a loss of accuracy. By better 
understanding the mechanisms leading to a loss of accuracy the 
analyst now has a unique opportunity to improve a projectiles 
initial design and test his theory prior to its manufacturing. 

CONCLUSIONS. For the first time, 3D transient finite element 
modeling techniques are being successfully applied to solving 
extremely difficult problems in tank gun saboted-rod kinetic 
energy ammunition design. The transient KE projectile/barrel 
interactions of actual rifled 105-mm and smoothbore 120-rnm tank 
gun systems have been modeled. 2D models provide useful 
information about the axial performance of saboted rod systems. A 
problem posed by transient 3D FE analyses is the huge amount of 
data generated that must be interpreted to glean useful 
performance information. This problem can be mitigated by 
judicious post-processing using, for example, computer animation 
techniques to present the data. Even with the present generation 
of supercomputers, compromises must still be made in 3D analyses 
due to CPU time and storage limitations. In the present context, 
these limitations are not particularly serious but do place 
practical restrictions on how much of tanksystem can be modeled. 

A final comment on barrel/projectile interaction modeling is 
in order. Just how detailed the 2D or 3D modeling of the 
barrel/projectile interaction really needs to be remains an open 
matter. Whether solid continuum finite elements or even beam 
element models will be adequate, depends on the application. BRL 
and LANL have in fact assembled a hierarchy of barrel/projectile 
interaction models of differing levels of sophistication. These 
range from the RASCAL and SHOGUN beam-element codes running on 
PC's, to full transient continuum codes such as DYNA2D or DYNA3D 
and PRONT03D running on Cray supercomputers. 
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Abstract 

In this paper, we propose a method for computing tbe SVD of a product of two 2 x 2 
triangular matrices. \Ve show that our method is numerically desirable in that all relevant 
residual elements will be numerically small. 

1. Introduction 

The problem of cornputi11g the singular value decomposition (SVD) of a product of two matrices has 
many applications; see, e.g.? [4] and [j]. Tlle problem is also closely related to finding a generalized 
SVD of two tnatrices (c.f. [GI). A crucial step in either the product SVD (PSVD) or the generalized 
SVD (GSVD) problem is the accurate computation of the PSVD of two  2 x 2 triangular matrices. 

JIre nvish to achieve two objectives: first, to ensure that the transformations a.pplied to the 
triangular matrices must leave the matrices triangular, and second, to ensure that  the product of 
the transformed matrices must be diazonal. ,4s discussed in a recent paper by Bai and Deinmel [I], 
these two properties are essential to guarantee stability of the GSVD method [6]. Several strategies 
have been proposed bo preserve these two properties. In [l] exanlples are presented \vhere these 
strategies can iail, and a new rnethod that overcomes the exposed drawbacks is then proposed. 

In this paper we propose an alternative approach. Our new method, which we will call a half- 
recursive method, is:a slight variation of the frilly-recursive method proposed in [2] for computing 
the SVD of a product of several matrices. We show that while our algorithm enjoys the same nice 
numerical properties as the one in [I], it is simpler to impletnent. 

Our paper is organized as follows. In Section 2 we describe the PSVD of two 2 x 2 upper 
triangular matrices. A criterion for numerical sta.bility is given in Section 3. We present our new 
algorithm in Section 4, and an error analysis in Section 5 .  Finally, solne detailed proofs can be 
io~incl in @ppendices A and B, and a numerical esa~nple in Appendi:~ C. 

2. Problem Defillitio~~ 

Given two upper triangular matrices: 

we call the product A: 
A = A 1 A 2 ,  



and let 

Our objective is to find three orthogonal matrices Ql, Q2, Q3 such that  

and 

for i ='i, 2. The two equations (2.1) and (2.2) imply that 

A' =. A; A; . 

In words, we would like to find three transformations Q1, Q2 and Q3 to zero out four elements, 
namely, the off-diagonal elements of A and the sub-diagonal elements of Al and Az.  The extra 
requirement, although mathematically feasible, may cause numerical difficulty if not treated with 
care; see examples in [l] and [2]. Our goal is to develop an algorithm so that properties (2.1) and 
(2.2) will be satisfied except for very small numerical errors. In this paper, we use the vector -and 
matrix 2-norms: 

II ' II = II ' 112 . 

2.1. Relationship with GSVD 

The basic step in a GSVD of two 2 x 2 triangular matrices Al and A:! is to compute the SVD of 
the product .41 . adjjoint(A2), where 

It is therefore obvious that  our two-by-two PSVD method can also be applied to  the two-by-two 
GSVD problem. 

3. Criterion for Numerical Stability 

Recall that  A:, A; and A' denote the three matrices Al, A2 and A, respectively, after the equivalence 
transformations as defined in (2.1) and (2.2) have been performed. Let 6 denote the relative 
precision of the floating-point arithmetic, and let 2'1, A: and A' represent the computed A:, A; 
and A', respectively. We want the product A' to be diagonal: 

:Issurne that, given tlie exact upper triangular matrices A: , for i = 1,2 ,  we compute using floating- 
point arithmetic the product: 

2 



Due to rounding errors, we can hope for only 

where 6' satisfies the relation: 
1 &'I = O(€ f'). 

The quantity f', defined by 
f '  = 141 Ib'al + lb:l 141 7 

provides an upper bound on the rounding error for b'. Thus, the best that we can aim for is to  
compute A: such that 

11 A: - A: 1 )  = O ( E )  , (3.4a) 

with &' satisfying 
16'1 = O ( € f ' ) ,  

and 
j' = I z ~ I  + l b i l  141 . 

The relation (3.4a) implies that the ( 2 , l )  element i: of 2: will satisfy 

for i = 1,2.  

We prove in Section 5 that by using our new method, the computed matrices .& and di will 
sctisfy ~ondit ion (3.5) and A' will satisfy a condition somewhat weaker than (3.4b)) namely that 

The conditions (3.5) and (3.6) are equivalent to the conditions proposed in [l] for computing the 
GSVD of the two matrices Al and adjoint(A2).  

4. New Algorithm 

In this section, we propose a new algorithm for the PSVD problem.. Our algorithm is a modifi- 
cation of the algorithm presented in [2] for a product of several matrices. The tool we use is a 
transformation discussed in Charlier et al. [3]: 

where c2 + s2 = 1. We may regard the transformation as a permuted reflection: 

Tbe reason behind using permuted reflections is that we actually deal with an n x n problem. The 
permutation that is incorporated into Q corresponds to the so called odd-even order of eliminations 
in one sweep of a Jacobi-SVD procedure. 



While each transformation Qi is defined by the cosine-sine pair: 

ci = cos di and s; = sin Oi , 

we also associate Q; with the tangent 
t; = t a n & .  

Given ti, we can easily recover c; and s; using the relations 

c; = 
1 

and si = tici . 4=: 
Following the exposition in [2] we consider the result of applying the left and right transformations 
Q! and Q, to  a 2 x 2 upper triangular matrix A: 

We can derive from (4.3) these four relations: 

b' = clc,(-at, + dt, + btlt,) , (4.4b) 

a' = clc,(btl + d + atit,) , ( 4 . 4 ~ )  
I d = clcT(a - bt, + dtlt,) , (4.4d) 

where tl = tandl and t, = tand,. The postulates that both e' and b' be zeros define two conditions 
on tl and t,, so that (4.3) represents an SVD of A. The postulate that  e' be zero defines a condition 
relating dl to  d,, so that  if one is known the other can be computed in order to reduce A' to an 
upper triangular form. For ease of exposition, assume for now that  abd # 0; this condition will be 
removed in Section 5.2.  This assumption implies that clc, # 0, and so the postulate that  e' = 0 in 
(4.4a) becomes 

-at, + dtl - b = 0 . (4.4e) 

The consequence of (4.4e) is that  ( 4 . 4 ~ )  and (4.4d) simplify to 

and 
d' = cic,(t? + l)a, 

respectively. The relations (4.4f) and (4.4g) imply that 

For the SVD problem, both e' and b' are zeros, and we can use (4.4e) to reduce (4.4b) either to an 
equation in ti: 

where 



or to an  equation in t,: 
ab 

bt = tic, (d) (t: t 2t,a, - 1) , 

where 

From (4.5a) we get a quadratic equation by setting b' to  zero: 

and from (4.5b) we get 
t: + 2c,tr - 1 = 0 . (4.5d) 

The two equations ( 4 . 5 ~ )  and (4.5d) are solved by the formulas given in [2]: 

In finite-precision arithmetic, either one of tl and 2, can be computed with a higher relative precision. 
In particular, if 

sign(r) = -sign(b) , 
then (4.6d) will produce a very accurate t ~ ,  whereas if 

then (4.6e) will produce a very precise t,. If r = 0, then both tl and t ,  will be computed with the 
same relative accuracy. 

Now, let r # 0. We first present a lemma relating the sizes of t l  and t, to those of a and d .  

Lemma 4.1- Let abdr  0- If I a I >I d I , then I a1 I >I U, I and I tl I < I  t ,  I . Conversely, if 
1 1 < I  d 1 , then I U I  I <I a, I and I tl I >( t ,  I . 

Proof. See [2]. 

We are ready to present an algorjthln for computing the three orthogonal matrices Q1, Q? and 
Q3, such that (2.1) and (2.2) are satisfied. The algorithm proceeds in two stages. In the first stage, 
we calculate the product A explicitly: 

a = a l a 2 ,  (4.7a) 

b = alb2 + b l d z  , (4.7b) 



We use (4.6a) to  calculate T ,  and then compute either u, or u, so that the corresponding tangent 
defines the smaller angular rotation. Hence we obtain either tl or ts. In the second stage we use 
the relation (4,4e) with tl or t~ as the reference tangent to cornpute the remaining transformations. 
Suppose that tl is known. Then t z  and 13 are generated by the forward substitutions: 

On the other hand, if t3 is known, then t2 and tl are generated by the backward substitutions: 

If tl is computed first as the reference tangent, then (4.8a) will guarantee that A: will be numerically 
upper triangular and (4.8b) will guarantee that  A' will be numerically diagonal. As will be shown 
later these two properties will guarantee that A', will be numerically upper triangular and hence 
both (3.5) and (3.6) will be satisfied. 

It appears that  the half-recursive method is equivalent to the method proposed by Bai and 
Demmel in [I] in the sense that it also computes a very accurate PSVD of A1A2, and that  it 
uses essentially the same criterion in deciding whether the middle transformation Q2 should be 
computed from Q1 or Q3. A proof that the two methods use the same condition for computing Q2 
is given in -4ppendix B. 

We refer to the method defined by (4.8a)-(4.Sb) or (4.8~)-(4.8d) as half-recursive, to differentiate 
it from the fully-recursive method proposed in [2] for computing the PSVD of several matrices. The 
fully-recursive method also picks the smaller outer angular rotation as the starting point for the 
recursion, from which all remaining rotations are computed. However, there the other outer rotation 
is computed from the previous rotation in the sequence. For example, in the case of a product of 
two matrices, the tangent tg in (4.Sb) would be computed from tz using (4.4e): 

Note how (4.Sb) uses the product A whereas (4.9) uses the matrix A2.  It was shown in [I] that 
the fully-recursive method may fail to satisfy (3.6) and thus is not recommended for the GSVD 
problem. On the other hand, the fully-recursive method easily extends to any number of factors in 
the product. It is not clear what  is an appropriate extension of the half-recursive method for the 
case of a product of more than two matrices. 

5 .  Backward Error Analysis 

In this section, we present a backward error analysis of our computation. We assume that our 
initial parameters are perturbed, and use tlze "bar" symbol. For example, instead of initial values 



( I ,  b and d, we have the perturbed values Z, b and 2. We assume further that ssact arithmetic 
will be performed by using these perturbed initial values. We use the "tilde" symbol for the exact 
values based on the perturbed data. For example, r' will denote the exact result using formula 
(3.8a) for the perturbed data El  5 and d: 

The symbol fl(a) will be used to denote the computed result of the parameter a. In our error - 

analysis, we adopt a convention that  involves a liberal use of Greek letters. For example, by a 
we mean a relative perturbation of an absolute magnitude not greater than E,  where 6 denotes the 
machine precisiod. All terms of ordcr c2 or higher will be ignored. 

We start our procedure by computing elements of the product matrix A. For the elements of 
the computed product matrix A we have 

where, according to our convention, the parameters a l ,  61, PI, P2,  and P3 are all quantities whose 
absolute values are bounded by E .  From (5.1) it follows that  

with I (  SA; I( 5 6 ( 1  Ai 11 . This property, which in general does not; hold for a product of more 
than two 2 x 2 upper triangular matrices, will allow us to prove backward error type assertions on 
the half-recursive method. 

Our analysis is divided into two parts. In Section 5.1, we consider a regular case where all 
elements of the computed matrix product are numerically significant with respect to  the maximal- 
in-magnitude element, i.e., 

In Section 5.2, we consider special cases where at  least one elenlent of the computed A is numerically 
insignificant. 

5.1. Regular Case 

Without loss of generality we assume that rb < 0, i.e., sign(r) = -sign(b). Thus we compute tl 
first as the reference tangent from which tz  and t s  will be next determined via ( 4 .8~~ )  and (4.Sb) 
respectively. We recall several lemmas from [2]. 

Lemma 5.1. Let & and fl be the exact and computed solutions, respectively, of equation 
' (3.7~) with data i i ,  6,  d Moreover, let E l l  sl and E l ,  Zl be the exact and computed cosines and sines 
using (3.4) with the tangent value fl. Then 



where I €5 I < 6 ,  I p1 I < 6 ,  arid I ul I < E. 

Proof. See [2]. I7 

In words,, Lemma 5.1 states that  the procedure (4.6a)-(4.6e) for solving ( 4 . 5 ~ )  is numerically 
stable in the fo*ward sense. Three lemmas follow, leading to our main result of Theorem 5.1. 

Lemma 5.2. The recurrences (4.8a) and (4.8b) yield and i3 such that 

with 

Proof. Thc proof easily follows from (4.Sa) and (4.Sb). 

Lemma 5.3. The recurrence (4.8b) yields f3 such that  f3 = i3(1 + 13y) . 

Proof. From (4.Sb) 

Since [2//7il 5 1 and I&/&1 5 1, we get 

We now show that Z' and 2' are computed with high relative precision. 

Theorem 5.1. Let ii' and d"' be the exact singular values of the computed product A. If If' 
and h are computed via relations (4 .4~)  and (4.46) then the computed singular values a' and 2 
satisiy the following relations 

Proof. From (4 .Jf)  and (4.4g)) we get 

&' = d(< + l)&t3 and 2 = ii(g + l)t1r!3 , 

where fl and i3 are the exact tangnts correspondirlg to the data a, 6 and d and & = &/ti. Thus, 
the lemma follows ,from Leltl~nas 5.1 and 5.3. 

Theorem 5.2. Suppose that the cotnputed tangent values are i$ and f3. Let E l ,  sl, Eg and 
S3 be the corresponding exact cosine and sine values. Let 



That is, e"' and 8' are the exact values of e' and b', respectively, corresponding to the computed 
data ii, i, d, & and f3. Then 

I ~ ' l 5 ~ ~ 1 ~  l l ~ l l  9 (5 .8)  

I it I 5 1 C 2 ~  I1 A I1 9 (5.9) 

where K1 and K2 are some positive constants. 

Proof. See Appendix A. rn 
Theorems 5.1 and 5.2 together state that the SVD of the upper triangular matrix A is computed 

very accurately. We now justify why the ( 2 , l )  element in the computed matrix A: can be set to 
zero, by showing that ( F:. I corresponds to a relative and elementwise perturbation of A: of the 
order of E .  Let the cosine and sine pairs E ,  and 2; satisfy & = s; /E; ,  for i = 1,2,3. From (4.2) we 
can derive that 

E; := fl(Zi) = ?;(l + 3p;)  , (Fj.lOa) 

Let A: denote the exact updated matrix derived from A;., E; and 3;. Our next results provide a 
bound on the element E:, i = 1,2, defined by the relation 

Theorem 5.3. The matrices A', and A$ are almost upper triangular in that their (2,l) 
elements E: and e'i satisfy the inequalities: 

and 

1 z', I 5 K 3  II A2 II , 

Proof. Note that -2; is the same for both fully-recursive and half-recursive ~nethods. The 
proof that A: is almost upper triaugular in the sense that (5.12a) holds can be found in [2]. 

In order to prove the second part of the theorem note that from (5.4a)-(5.4d) and (5.la)-(5.1~) 
we get the following two relations to first order of the machine precision: 

a l a z ( l +  a + 3,+)i3 - dld2( l+ 6 + q5)F1 + albz(l+ 2Pl) + bldz(l + 2P2) = 0 , (3.13b) 

By multiplying both sides of (5.13a) by d2(1 + 2P2)  and subtracting from (5.1313) we obtain 

or, since a1 # 0, 



where 

A = a2 (a  + 2$)r)t3 - ~ 2 ( 6  + 4 - 41 + 2P2)G + bzPl - d2(2P2 + 2$1)f2 - 

Thus, we can rewrite (5.11) for i = 2 as 

Now, as we start the half-recursive method from t l ,  it means that 5 1 and Id1 5 151. Hence 
from (5.10a), (5.lOb) and (5.13c), we derive the inequality: 

leal 5 I&E2a2(a + 2$)1 + IE3Z2a2(6 + 4 - 41 i- 2P2)I + I E ~ E ~ ~ ~ P z I  + IG2d2(2P2 + 2741)l 

L 1i3~11Azll , 
colnpleting the proof. 

In summary, we have proved two results using backward error analysis. First, the computed 
matrix product A' is almost diagonal in that inequalities (5.8) and (5.9) both hold. Second, we 
can safely set each computed matrix A{, i = 1,2 ,  to a triangular form because (5.12a) and (5.12b) 
are valid. As a final note, even though we have assumed that rb < 0, we can easily prove similar 
results for the case where rb > 0. 

5.2. Special Cases 

In this subsection, we assume that  inequality (5.2) is violated. To be specific, define 

and 

Now, 

i t . ,  one of the elements of A is numerically insignificant. This situation requires modifications 
to our algorithm, since the proposed formulas may break down. In particular, we do not solve a 
quadratic equation to  determine either & or f3. Instead, we set one of the two tangents to  zero and 
attempt to  compute all the other tangents from the recurrences. I e  divide the special cases into 
three groups: one, 

I i i I  + l i l f  0 and I t l j L O ,  (5.17) 

two, 
I7 i I  + I z 1 = 0  and 1 6 1 # 0 ,  

and three, 

First, assume that  (5.17) lzolds. Hence at  least one, but not all, of the following three conditions 
hold: 

~ = i ,  y = i i  or y = d .  
- 



We set to zero if 
161 > l J l ,  

and set f3 to zero if 
1.1 <Ill 

Thus, the sizes of the diagonal elements of 2 will be compared to decide which one of fl or F3 should 
be zeroed. Without loss of generality, assume that (5.20) holds; hence, fl becomes the reference 
angle. So, & and are computed from recurrence (4.8a) aqd (4.8b). Further, since fl = 0 it 
follows that  & = - & / E .  Substituting these values into (5.6) and (5.7), we can verify that  Theorem 
5.2 holds. Similarly, Theorem 5.3 follows from ( 5 , l l ) .  We note that it is very important to decide 
which reference angle to choose, even for the case when 6 is numericallv zero. At first, the choice 
of the reference angle may seem arbitrary for a "small" i, since either & or & can be set to zero. 
I-Iowever, an unnecessarily large error mag occur unless we pay special care. 

Second, assume that (5.18) holds. Then, at  least one of the ails equals zero and a t  least one of 
the dj's also equals zero, for i, j = 1,2 .  A solution is to permute either the rows or the columns, in 
order to ensure that the transiormed product is diagonal and that the data are reordered. Hence for 
this case, we may set the two extreme tangents {&, i3) to (0, w], resulting in the transformations 
being rotations of negative ninety and zero degrees, respectively. To be specific, consider the case - - 
where one or more ai7s equal zero. If al  = 0, set & = 0 and t2  = t 3  = [m. If a1 # 0 and a2 = 0, set 

= 0, compute f2 from the forward recurrence, and set f3 = clo. Note that we may also choose to  
determine the tangents using the values of the dj's. 

Third, assume that  (5.19) holds. We need to account for the fact that we are really solving an 
n x n problem, Although the 2 x 2 subproblem is already numerically diagonal, it is not sufficient to - - 
set tl = t3 = m, whicll will leave the 2 x 2 product unchanged. The n x n data need to  be reordered, 
calling for t; = & = 0, i.e., the affected rows and columns will be permuted. Unfortunately, while 
applying the symmetric permutation, the triangular structures of both A i  and A2 are destroyed. 
Therefore, f2 is determined from the recurrence. 

6. Concluding Remark 

In this paper we have presented a simple and accurate way to calculate the PSVD or GSVD of 
two 2 x 2 upper triangulat matrices. In Appendix C we present an example which shows that our 
half-recursive n~ethod produces identical numerical results as the method in [I]. 
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Appendices 

A Proof of Theorem 5.2 

We first present a lemma. 

Lemma A.1. Let el and & be the exact values corresponding to the given data a, 6 and l, 
and let be the computed value of &. Define a residual r l  by 

Then 
I 71 I 5 1 ~ 4 f l i I  , 

where K4 is a positive constant. 

Proof. See the proof of Lemma 5.2 in [2]. 0 

We now have the necessary tools for proving the theorem. 

Proof (of Theoren1 5.2). First, from Lemma 5.2 and relation (5.4b) we get 

Using (5.la)-(5.lb) and (5.4d) we prove the inequality: 

Second, rewrite (A.1) as 

From (5.6) we obtain 

Substituting (A.5) into (A.4) and rearranging terms, we get 

and so 

From (4.6d) we derive 
1 

I l l  I 5 5 ' 
and from (4.6b) we get - - 



It follows that  
d - 

a 
Iill S I H l  < l i l  7 ,  (A*') 

since we have assumed that I 2 I  <I Z 1 . Finally, recall from (5.3) that & = & ( l  + 10cs), and use 
(A.6), Lemma A . l  and (A.5) to obtain 

thus completing the proof. C] 

B How to Compute the Middle Transformation 

As pointed out by Bai and Demmel in [I], a critical issue concerns how the middle transformation 
should be computed. They proposed the following scheme for its computation after both end 
transformations have been determined. In order to relate the test for computing Q2 in [I] to the 
test in the half recursive method, we first translate our settin$ to  that  in [I]. Let 

Note that the relation, given by 

upon permuting rows and changing the signs of the top row, is equivalent to  

Similarly, 

By changing the sign of the second columns, and permuting columns we obtain 

In [I] Bai and Dem~nel used (B.lb) and (B.2b) as a starting point for computing Q2. Their argument 
is as follows. After postinultiplications of both (B.lb) and (B.2b) by Q2, the (1,2) elements of G 
and H should become zeros. Now, one should compute Qz from the one product, either G or H, 
for wbich the computed element in the (1,2) position has a smaller error relative to  the norm of tbe 
row in which it resides. The magnitude of that error can be only bounded and hence the test for 
the choice is based on the bounds of the errors. It is easy to see that the bound g for the relative 
error in the (1,2) element of the computed G is 



while tbe bound h for the relative error in the (1,2) element of the computed I-I is 

Now, if g < h then Bai and Dernrnel compute Q2 from U = A  and otherwise from V T ~ .  The nest 
lemma states that the conditions that specify how Q2 is computed in [l] and by the half-recursive 
method are essentially equivalent. 

Lemma B.1. In exact arithmetic the condition 

s < h  

where g is defined by (B.3a) and 11 is defined by (B.3b), is equivalent to  the condition 

Proof. First note that (B.3a) and (B.3b) can be simplified to 

and 

respectively. By using (4.Sa) and (4 .8~)  the relations (B.3a) and (B.:3b) simplify further to 

and 

respectively. Hence (B.4a) is equivalent to 

Ibld2l + It14 5 lad21 + (at31 

We now prove that* (B.4b) implies (B.4a). Tbe proof that d < a implies that h < g is analogous 
and is omitted. The proof is elementary but tedious as it requires us to consider a large number of 
cases. So we assume that a >_ b. Then Lemma 3.1 implies that ta 2 t l .  From (4.8b) we see that 

[at3 + bl = IdtlI , 
and as lat31 > latll we conclude that 

as fro111 (4.7b) b = alb2 + bldz. Substituting (4.8b) into (B.7) and using (4.7b) again we get that 
(B.7) is equivalent to  the following inequality: 

Case 1. -1bl > Ibld21 - lalbzl. 



Then 
lat31 2 ldtll - lbl 2 ldtll + Ibld21 - lalb2l , 

establishing (B.7). 

Case 2a. -1bl > lbld21 - lalbzl and juts[ > Ibl. 

Then lalbzl > lbld21 and using (B.8) we obtain that 

lbidzl+ Idti1 = Ibldzl + lais + a l b z  + bidz) = [at31 + 2 Ib~dzl - laiba( , 

from which (B.7) iollows. 

Case 2b. -1bl > Ilrld21 - lalb21 and lat31 5 Ibl. 

Then again lalbzl > Ibldz(. Now from (B.8) 

from which (B,7) again follows. 

Remark. Note that there might be a slight difference in using (B.4a) or (B.4b) as the lemma 
holds only in exact arithmetic. Ln finite precision computation, the relations (B.4a) and (B.4b) 
may not always be equivalent. However, we have not been able to find any numerical example 
where these two conditions are not equivalent. Moreover, as shown in this paper the consequences 
of numerical- non-equivalence are numericaly insignificant. 

C Numerical Example 

It has been proved in Appendix B that the half-recursive procedure computes essentially the same 
numerical results as the direct method of [I]. For both methods, the end transformations are 
computed explicitly from the product A = AIR2, and the middle transformation is computed 
from the same direction. The greatest difference between the fully-recursive method and the other 
two occurs when there is cancellation in forming the product A = A1A2. In the following PSVD 
example, A1 and Az each has an O(1) norm, but the product AIAz has an O ( ~ O - ~ )  norm. Hence 
errors which are small relative to the initial matrices may be large relative to the product. 

The three methods all compute the left transformation from the explicit product, and calculate 
the iniddle transformation from A1. We use the stibscipts dir,  hr ,  and f r  to distinguish between 
results computed via the direct, half-recursive, and fully-recursive methods, respectively. The 
computed values of A:,hr, and A:,,, are numerically iderttical in that the corresponding 
entries are numerically equal: 



The computed values of A;,dir, and A:,j,  are numerically triangular but now the (1,2) element 
in . i iVj,  is significantly different than the corresponding element in &,, or 

To rnaintain triangularity, and z! are truncated by settiyg the appropriate elements to  zero. 
Let A;' and A;' denote the truncated matrices. The product A" = A;' A: should be diagonal: 

- 
Alldir = 5.726260868959542e - 05 0 

1.615587133892632e - 27 -2.2026323043705ti4e - 05 

Clearly, Allhr and A ~ ~ ~ ~ +  are numerically diagonal, but fails the criterion of diagonality. Forcing 
X t j r  to be a diagonal matrix requires a truncation of O(lo-"), wluch is significant with respect 
t,o IIA"II.  The matrices * d i r  and .4",1,, require only insignificant truncations to obtain diagonality, 
but we have previously made O(10-17) truncations during their computation to force and 
- 

A:,,,, to triangular forms. Thus, equal amounts of absolute truncation errors have been committed 
by all three methods; the only difference is that the relative truncittion error is largest for the 
fully-recursive method. 

It is interesting to note that if triangularity is not enforced and the factors A: and are 
multiplied, then-none of the products can be considered diagonal. One may say that the numerical 
diagonality of Allhr and Pd;, is a consequence of the truncation to triangular forms. 

5.72826OS68959542e - 05 2.464671807471544e - 16 
';,dir . 'i,dir = 1.615557133892632e - 2'7 -2.202832304370564e - 05 

In conclusion, our esample shows that the half-recursive and direct -methods produce ~zu~nerically 
identical results, while the fully-recursive nletllod fails to meet the diagonality criterion. 
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Abstract 

In this paper1, we present an asynchronoua array deaign for the minimum variante 
distortionless response (MVDR) beamformers. The array transforms the constrained 
problem into unconstrained form, enabling an unconstrained processor to compute 
the beamformer output. The key component of the array is a communication protocol 
which controls input data flow properly and efficiently. In the design, instead of using 
global control, self-timed processing elements (PEs) a d  communication protocols are 
provided. The asynchronous m a y  for MVDR beamformers can significantly speed 
up the total computation time. Finally, we present an algorithm in Occama languages 
for the aaynchronization scheme of the processes. It is felt that the array has promise 
for real-time beamforming with planar array antennas. 

1 Introduction 
Due to advances in VLSI technology, there is much interest in using array processors 
to improve the throughput rate of various signal processing algorithms. The use of 
systolic arrays for adaptive beamforming technology has been proposed and devel- 
oped by several authors [I, 2, 3, 6-91. In these works, the adaptive beamforming has 
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Figure 1: The functional diagram of a MVDR beamformer. 

been formulated as a least-squares problem and implemented using triangular sys- 
tolic array by means of the QR algorithm. In this paper, we propose an asynchronous 
array which can perform the QR decomposition needed in the solution of the MVDR 
beamformers . 

* 

In general, a minimum variance distortionless response (MVDR) beamformer has 
(rn + 1) sensor elements and a beam-pattern forming network comprising (m) weights 
that have to be determined in order to maximize the array response to the desired 
signals. The objective of an optimd beamforming system is to minimize the total 
error power via manipulation of the weight values subject to the clamped weight con- 
straint. The (m + 1 )-t h (reference) sensor element is constrainted to a const ant value 
p ( j )  (0 < p ( j )  < 1) .  The functional diagram of a MVDR beamformer is shown in 
Figure 1. At each sample time t i ,  evaulate the a posteriori residuals 

where x(til j )  is  the j-th element vector of (complex) signal samples received by the 
array at time t i ,  y( t ; )  is the value at time ti of an additional reference signal, and w ( j )  



is the j-t h element vector of (unconstrainted) weights which minimizes the equantity 
for 1 5  j l n  

subject to a linear equatity constraint of the form 

The symbol 11 . I( = 1) . denotes the euclidean norm. 

The key components of an adaptive antenna syatem are illustrated in Figure 1 and 
Equation 1. The amplitude and phase weights are selected by a beampattern con- 
troller that continuously updates them in response to the element outputs. In this 
paper, we describe an asynchronous algorithm and architectures for high performance, 
digital, adaptive beamforming. 

Section 2 describe an efficient linear equation using the Givens rotation [3, 5 )  and 
the QR decomposition algorithm [l, 2, 7-91. Most previous array [l, 2, 6-91 may 
be designed more delay time arid more complicated implementations. To solve these 
problems, the top boundary PEs receive both x(t ; ,  m) and c(ti) m) and compute 
a(ti ,  m) from two data. The a posteri residual equation is solved by uaing the Givens 
rotations [3, 51. The dervied equation is more understandable and can get higher 
performances. To achieve maximal parallelism of constrained MVDR beamformers, 
section 3 shows data dependencies in computations and systolic recurrence equations. 

Section 4 discusses an asynchronous design aad its time analysis for MVDR. 
In an asynchronous design, self-timed PEs and communication protocols are pro- 
vided. With the Occam program, it will be ahown that the triangular systolic bearn- 
former can simultaneously and concurrently process the input data from the rows 
and columns of the array antennas with a speed comparable to McWhirterls systolic 
array for MVDR beamformer. 



2 A Constrainted MVDR Beamformer 
The MVDR beamformer problem can be summarized from Equation 1: Given a data 
matrix X and a desired vector Y, find the tap weight vector W which minimizes the 
least-squares error 

m 

where z(t,, j) € X, w(j) E W, and y(ti) 6 Y. Mewhirtar and Shepherd [6-81 have 
developed an algorithm that directly extracts the residuals element e(t,), without 
using the weight vector w(j), by QR decomposition which consists of a sequence of 
unitary transformations applied to the measured signal matrix x(ti, j) to transform 
it to a triangular matrix. Assuming that a QR decomposition [6-81 has been carried 
out on the data matrix z(t,, j) so that 

where Q(j, ti) represents a sequence of elementary Givens rotations used to annihilate 
each element of a new data vector x(t,, j).  Then the equation 5 can be expressed in 
the form 

rn 

llE(j)ll = IIQ(j,ti) C { ~ ( t , , i )  w(j)) + Y(j)ll, 
j= 1 

( 6 )  

where both E ( j )  and Y ( j )  are a (m x 1) matrix, respectively. The weight vector w ( j )  
determines the characteristics of the beamformer. For a MVDR beamformer, w( j )  
can be chosen to minimize the output power $om equation 3. The solution .to this 
constrainted least squares minimization problem can be given by the the following 
formulation 

It follows that the a posteriori residual at j-th (reference) sensor element is given by 

 ti,^) [ E(j )  ] = [ ] [ ] [ ~ ( j )  ] + [ ( )  ] 
mxn n x m  mx1 mx 1. mx 1 



Similarly [ ~ c ~ h i r t c r  891, the Givens rotations Q(j, t,) can be used to annihilate each 
element of a new data vector 

x(t i , j )  
a(t,, j) = - 

c( t , ,  I 1. 
The inner product of Q(j ,  t i )  and a(ti, j) is Z( j ,  k) with a (m x 1) upper triangular 
matrix. It is simply given by 

where 1 5 j 5 rn and y is an coefficient rate of residuals. 

To efficiently implement Equation 10, we can use a triangular systolic array which 
can be carried out using the Givens rotations. The Givens rotation method- has been 
found to be particularly suitable for adaptive application since the triangularization 
process is recursively updated as each new row of data enters the computation. In the 
next section, we describe the Givens rotation and consider the systolic array design. 

1 

3 A Systolic Design for Constrainted MVDR 
To achieve maximal parallelism of the MVDR algorithm, we must try to find data 
dependencies in a computations. The following recurrences are ddned over the index 
space: 

1 i k , j < m  

where m is the number of processing elements in row and column. Assume that 
Ak,j(t i ) l  Rk,j(ti)r sink,j(ti), and cosklj(ti) are computed in the processing element with 
below index (k,  j) at time ti. In the equation of MVDR, the dependency of Rkqj(t,) 
is local, while the dependencies of Ak,j(ti)) c ~ s k , ~ ( t i ) ,  and ~ ink ,~ ( t ; )  are global. There 
are two kinds of processes as shown in Figure 2. 

1. Givens Rotation for PEj,,: Given ( 1 5 j 5 m ) 

where % is a real number, compute parameters sinj,, and cosj,j such that 

a o sin.  . + c0sj.j = 1 It1 



and 

where two funchtions, f,;, and f,,. , are 

That is, the plane rotation Qj, ,  is determined in terms of the elements RjPj(t,) and 
Aj,j(t,) to annihilate Aj,j( t i+l) .  The parameters of this process may be described 
functions as follows. 

2. Apply Rotation for PEk,,, k < j : 

Then Rk,j(ti+l) and Ak,j( t i+l)  are: 

and 
Ak,j(ti+l) = - sinjvj . R ~ , ~ ( t i )  + COSj, j  . A k , j ( t i )  

Once computed, a rotation is applied successively to each column of the affected pair 
of rows. Since each process applied to a pair of elements in adjacent rows, it can be 
identified by the indexes of the top element involved. This identifier is referred to as 
the process indez. A process dependence graph is a graph whose set of nodes is a set 



of processes to be executed, and whose arcs represent an ordering relation between 
these processes. A processes dependence graph for computing 

is given in Figure 2. In the figure, procesaea are identified by their process index. 
Each rotation application is indicated in Figure 2 by a rectangular vertex. The pa- 
rameters followed by their application. This is not the only process dependence graph 
that is compatible with a QR factorization based on Givens rotations. Its cellular 
structure, however, makes it amenable to realization as a systolic array. 

Algorithm 1: A systolic version for MVDR 

X l j ( t ; )  - x ( t i , j >  initial = { 
1,j t i )  *  ti, J:) 

where 

~ ~ ~ k , j + l ( t i + l )  - R k , j  ( t i )  

Two ordering constraints must be respected as shown in Figure 2. 



Figure 2: Systolic implementation of the MVDR beamformer. 



1. The plane rotation application performed by PE(1,2) must be complete before 
PE(2,2) can compute its rotation parameters. This is true in general: The 
plane rotation application performed by PE (k - 1, j) must be compute before 
PE (k ,  j) can compute its rotation parameters. 

2. Rotation application for PE (k, j) must be complete before PE ( k  + 1,  j) can 
be apply its rotation parameters, since both affect PE (k + 1, j). 

Both of these ordering constraints are represented in the process dependence graph 
by the horizontal arcs between processes: No data flow across the horizontal arcs, 
these arcs impose only a partial order on the processes. 

4 An Asynchronous Design 

A majority of the signal processing algorithms require a lot of the computations. In 
. a  systolic array, each PE receives the data, carries out the computations, and pumps 
the results rhythmically to the neighboring PEs. One problem with previous systoljc 
arrays is the global control of data movement in different PEs. To assure proper 
timing and synchronization in systolic arrays, extra delays are needed. This slows 
down the computation, therefore decreasing throughtput rate. Moreover, for large 
scale arrays this synchronization could become very tedious. 

To overcome these difficulties and to speed up the computation time, design of 
asynchronoua arrays was explored. In an asynchronous design, instead of using global 
clock, self-timed PEs and communication protocols are provided. The advantage 
is that the whole period of a clock unit for multiplication, addition, and routing 
can be separated into several small steps and some of these steps can be executed 
simultanously. The concept of asynchronous computations can be specified as below 
steps: 

1. send an acknowledge signal to previous processors while getting data from them 
and send a request signal to next processors while forwarding data to them. 

2. transfer data to next processors. 

3. execute input data and accumulate the results. 



Note that step 2 and 3 can be executed simultaneously. In this section, we will de- 
velop a protocol to implement the above processes. The idea is to use self-timed PEs 
in which the inner product operations is triggered by the availability of the data. The 
major different between the two architectures is the fact that the new array transfers 
the data to the next cell asynchronously by its local control unit, while systolic arrays 
require global timing for the control of data flows. Therefore, a PE does not have 
to wait for data until the previous PE complete its computation. It has the basic 
features of the previous systolic array with the exception that the data routing and 
computing in each PE can be operated simultaneously. 

To make the data flow independent of the operations in each PE, we need a pro- 
tocol to control the flow of data such that the values of input variables will not be 
overwritten during their cornputting periods. As shown in the proposed protocol of 
Figure 3, three kinds of signals (R, A, an8 E) are introduced: two external signals 
and one internal signal. The function of a R signal is to report to the next PE that 
the data in its output port is ready for transmission. The function of an A signal 
is to report the previous PE that its input port is ready to receive new data. The 
function of an E signal is to report the emptiness of the input port. The protocol 
can be described formally as below. 

1. Each PE receives a request from previous PE when the data (sin, cos, 7, and 
A) in the output port of previous PE are ready to be transmitted. 

2. The PE sends an acknowledge to previous PE when completely receives new 
data. 

3. Each PE has a internal signal, E, which report the emptiness of the input port. 

In Figure 3, we depict a detailed configuration of this protocol. Communication and 
processing in the array are usually executed in asynchronous parallil to reduce loss 
time in the processing elements. The loss time may yield some divergence between 
synchronized concurrent processes, and it decreases a efficiency of the system. An 
example of the algorithm can be described with Occam programs. Occam programs 
are built from three primitive processes: 

variable := expression assign value of expression to variable 
channel ? variable input a value from channel to variable 
channel ! expressior~ output the value of expression to channel 



request flag 4 data line 

(b) PEkVj (I I k < j I m) 
Figure 3: The propoaed protocols in the asynchronoua array. 



A sequent ial-construct is represented by 

SEQ P1 

Pn. 

The component processes PI, . . -, and Pn are executed one after another. A parallel- 
construct is represented by 

PAR P1 

Pn. 

The component processes PI,  . ., and Pn are executed together. The following algo- 
rithms of PE1 and PE2 show a fragment of Occam program for this asynchronization 
scheme of the processes in Figure 3 and Appendix. 

4 

It is easy to see that the above algorithm described correctly implements the 
asynchronous version for MVDR beamformera. Since the new input data are received 
orlly whenever input ports are ready to receive, indicating the completeness of internal 
computations, it guarantees that overwritting of input data will never occur. 

5 Conclusions 

In this paper, we have shown an asynchronous array processing algorithm and new 
PE designs for the array of MVDR beamformers. The design procedure should be 
applicable to other adaptive signal processings. It will be of great interest to design 
efficient systolic arrays and asynchronous arrays for those radar signal psocessings. 
The asynchronous array improves the performance of the systolic array further as 
indicated in our simulation. Some additional hardwares may be needed for imple- 
menting protocols, but a reduction of computing time is significant for large scale 
computations. It might be possible to improve the proposed protocol for data com- 
munication. Issues about implementation and evaulation of the asynchronous array 
deserve more research attention. More research can be conducted in this direction. 
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( PROC proc.PEjj ) 

PAR 
SEQ chl ? req5 

chl ? y[ time ] 
chl ! ack5 

SEQ ch2 ? req9 

ch2 ? A[ time ] 
ch2 ! ack9 
R[time+l] := SQRT( ABS(R[time]) ** 2 + ABS(A[time]) ** 2 ) 
PAR 

SEQ sin[time + 11 = A[tirne] / R[time] 
ch3 ! req3 

ch3 ! sin[time+l] 
ch3 ? ack3 

SEQ cos[time + 11 = R[time] / R[time] 
PAR 

SEQ ch4 ! req4 

ch4 ! cos[time + 11 
ch4 ? ack4 

SEQ y[time+l] := y[tirne] * cos[time+l] 
- ch5 ! reql 

ch5 ! y[time+l] 
ch5 ? ackl 

time := time + 1 



( PROC proc.PEkj ) 

R[1] := l.O(REAL32) 
SEQ 

PAR 
SEQ ch3 ? req3 

ch3 ?  in[ time ] 
ch3 ! ack3 
ch7 ! rcq3 

ch7 ! sin[time + 11 
ch7 ? ack3 

SEQ ch4 ? req4 

ch4 ? coa[ time ] 
ch4 ! ack4 
ch8 ! req4 

ch8 ! cos[time + 11 
ch8 ? rcq4- 

SEQ ch6 ? req9 

ch6 ? A[ time ] 
ch6 ! ack9 

PAR R[time + 11 := cos[time] * R[time] f san[time] * A[timc] 
A [ t i m  + 11 := cos[time] * A[time] - ain[ t im]  R[time] 

SEQ ch9 ! rcq6 

t a m  := time + 1 
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Abstract 

We explore the relationships between sequences of orthogonal polynomials and the process 
of error correction based on the use of weighted checksums, often called Algorithm Based 
Fault Tolerance. We show that the latter process can be reduced to a problem in orthogonal 
polynomials. We then use methods for generating sequences of orthogonal polynnomials to 
solve the error correction problem, where the checksums are computed using rather general 
sets of weights. The methods are equivalent to the matrix Lanczos tridiagonalization process. 
We give a simple numerical example. 

1. Introduction 

The Lanczos Algorithm was originally proposed by Lanczos [19] as a method for the compu- 
tation of eigenvalues of symmetric and nonsymmetric matrices. The idea was to  reduce a generd 
matrix to  tridiagonal form, from which the eigenvalues could be easily determined. For symmetric 
matrices, the Lanczos Algorithm has been studied extensively [7, 221. In that case, the conver- 
gence of the algorithm, when used to compute eigenvalues, has been extensively analyzed in [18, 
21, 25, 261 [27, p270ffI. This algorithm is particularly suited for large sparse matrix problems. A 
block Lanczos analog has been studied and analyzed by Underwood (cf', Golub and Underwood 
[13], Cullum and Willoughby [7] and Parlett [22]). However, until recently, the nonsymmetric 
Lanczos Algorithm has received much less attention. Some recent computational experience with 
this algorithm can be found in [6]. Besides some numerical stability problems, the method suffered 
from the possibility of an incurable breakdown from which the only way to "recover" was t o  restart 
the whole process from the beginning with different starting vectors [27, p388ffI. More recently, 
several modifications allowing the Lanczos process to continue after such breakdowns have been 

0 1 This research was partially supported by the National Science Foundation under grant CCR-8813493 and by 
the Minnesota Supercomputer Institute. 



proposed by Parlett et a1 [24] and by Gutknecht [15], and a numerical implementation has been 
developed in [9, 101. The close connection between the modified Non-symmetric Lanczos Algo- 
rithm and orthogonal polynomials with respect to indefinite inner products is discussed by Golub 
and Gutknecht [12] and Boley et. al. [2]. Recently, Parlett [23] noticed the close relation between 
the Lanczos Algorithm and the controllability- observability- structure of dynamical systems. In 
this paper, we show how the matrix Lanczos Algorithm may be used to transform a sequence of 
polynomials into another 'bortl~ogonal" sequence, how this relationship can be exploited to  handle 
general sorts of error correction process in Algorithm Based Fault Tolerance (ABFT) based on 
checksums. 

The Lanczos Algorithm [19] is an example of a method that generates bases for Krylov sub- 
spaces starting with a given vector. The Arnoldi Algorithm [3] can be thought of as a "one-sided" 
method, which generates one sequence of vectors that span the reachable space. In this paper, we 
extend this idea to the use of a two-sided method, the non-symmetric Lanczos Algorithm, which 
generates two sequences of vectors spanning the left and right Krylov spaces. 

This paper is organized as follows. First we give a short description of the Lanczos process 
in a rather general setting, then we show how this process can be used to generate a sequence 
of polynomials orthgogonal to an indefinite bilinear function ("inner product") given only the 
"moments," then we show how this polynomial construction applies to the error correction problem 
in signal processing. 

2. Description of t h e  Lanczos Process 

We give a brief description of the non-symmetric Lanczos process we have implemented. For 
clarity, we describe the algorithms at a level of detail appropriate for a MATLAB environment, 
omitting the specific methods used for the basic linear algebra computations. 

We consider a real vector space V with an associated inner product (x ,y )  of vectors x such 
that 0 < (x, x) < CQ with (x, x) = 0 only if x = 0. We suppose that there exists an orthonormal 
basis e l ,  ez, ..., and we express all the vectors in V in terms of this basis: 

In this basis, a linear operator on V will be expressed as a matrix A, and the transpose (adjoint) 
A= will satisfy (A*x, y )  = (x, Ay). We will write xTy = (x, y). We now describe the Lanczos ' 

algorithm in the general setting so that we may apply it to possibly infinite vectors in the sequel. 
We will also discuss the "nonsingularity" and "rank" of a matrix, but only for finite dimensional 
ones, so we have the usual definitions of these concepts. 

We use the following notation, to keep the description concise. Vectors are represented by 
lower case bold letters (b), matrices by upper case italic (B), and linear spaces by upper face 
bold (B); all other typefaces are scalars or indices. The notation span[vo,vl, ...I denotes the 
space spanned by the column vectors vo, vl ,  .... If vk = A v ~ - ~  for all k, SO that vk = A ~ - ' V ~ ,  the 
sequence of vectors v l ,  vz, ... is called a Ii'rylov sequence, and the space span[vl, v2, ...I is called the 
right Krylov space K generated by the vector vl. We let Kk denote the truncated space generated 
by the first k vectors: ICk G [bl, Abl, ..., ~ ~ - ' b ~ ] .  Likewise, we let L denote the left Krylov space 
ipan[c l ,  A=,', ...I, and Lk the truncated space generated by Lk = [CI, A ~ C I ,  ..., ( A ~ ) ~ - ~ c I ] .  



Given an operator A on V and two non-null, vectors bl,  cl in V, a l l  represented as a matrix 
or vectors, respectively, in a particular orthogonal basis, the algorithm generates two sequences , 

of vectors B [bl, bz, ...I and C 5 -[cl, cq, ...I such that 
. 

span[bl, ..., bk] = K k  and span[cl, ,.., ck] = Lk for d k. (I) 

Given vectors bl , ..., bk and cl , ..., ck, the vectors bk+l and ck+l are computed by the formulas 

and 
T 

Ck+l = A Ck - [cl, ck]gkr 

for some (k - 1)-vectors of coefficients hk and gk so that (1) is satisfied automatically. The hk and 
gk are chosen to enforce certain other conditions, principally the "bi-orthogonality" condition to 
be described below. 

The bi-orthogonality condition that we would like the vectors to satisfy is 

T T bk+1[clr ..., ck] = 0 and ~ ~ + ~ [ b l ,  ..., bk] = 0. 

But this may not always be possible. We consider two cases. If the k x k matrix 

T [cl, ..., ck] [bl, ..., bk] ( or equivalently L ~ I C ~ )  

is nonsingular, then we can find the hk and gk to enforce (2) by the formulas 

hk = ( [ c ~ ,  ..., cklT[bl , ..., bk])-' [ c ~ ,  ..., ck lT~bk  

T T gk = ( [ b ~ ,  ..., bkIT[cl, ..., ck])-l[bl, ..., bk] A ck. (4) 
We will see below that all but two entries of hk and gk turn out to be zero, so that the resulting 
algorithm is exactly the nonsymmetric Lanczos algorithm as described in [19] [27, p388Rl. 

If (3) is singular (or optionally the condition number is above a certain tolerance), then we let 
j denote the largest index less than k such that 

[el, ..., cjlT[bl, ..., bj] ( or equivalently LT lij) is nonsingular ( 5 )  

(or sufficiently well conditioned). Then we may enforce the partial bi-orthogonality condition 

T T 
bkfl[cl, -.-, cj] = 0 and ~ ~ + ~ [ b ~ ,  ..., bj] = 0, (6) 

by the formulas 
([cI, ..., cjlT[bl, bj])-l[cl, ..., c j l T ~ b l , .  

h k =  [ I ( 7 )  
h' k 

and 
([bl, ..., bjlT[cl, ..., cj])-'[bl, ..., b j l T ~ = c k  

a =  [ (8) 
g'k 

where the hik, gtk are two (k  - j)-vectors. If the intervening vectors bi+l, ..., bk and cj+l,  ..., ck 
are ad formed by this prescription, then condition ( 6 )  will be satisfied by any choice for h'k, gik. 
So we will make the choice to orthogondize (in the usual sense) the vectors bj+l, ..., bk among 
themselves and the cj+l, ..., ck among themselves. 



Algorithm 1. 

1. For k = 1,2, ... until stopped 

2. Expand Krylov spaces: Set bfil' = Abk and cfJl = A ~ c ~ .  

3. Let j be the largest index s.t. (5) holds. 

4. Enforce bi-orthogonality condition (6) by setting 

5. Orthogonalize within last un-bi-orthogonalized cluster by setting 

We note that there are several choices for the stopping condition in step 1. We choose the 
following. The process continues until b,+l = 0 for some r, or c.+l = 0 for some s. Suppose 
without loss of generality that c,+l = 0 occurs first. We may then continue expanding the right 
Krylov sequence b,+l, ..., b, by appending a sequence of zero vectors to  the corresponding left 
Krylov sequence c.+l = ... = c, = 0, but for our purposes in the next section, it will suffice to  
stop at  step s. 

The resulting vectors generated from this algorithm will satisfy certain important properties 
that we mention. Let B = [b l ,  ..., b,] and C = [cl, ..., c,] be the matrices of a l l  the vectors 
generated. The vector bk+, is a linear combination of Abk and previous vectors b i ,  i 5 k .  Thus 
the matrix B of generated vectors satisfies 

where H is a unit upper Hessenberg matrix consisting of all the coefficients hk, k = 1, ..., r. 
Likewise, the matrix C satisfies 

A ~ C  = CG, 

where G is a unit upper Hessenberg matrix, consisting of all the coefficients gk, k = 1, ..., r. That 
is, the k-th columns of II and G are, respectively: 

H.. - [I] and f3 .k  = [f ] , 
where each "1" entry above occupies the k + 1-th position, lying on the sub-diagonal of H and ' 

G, respectively, for k = 1, ..., r .  The bi-orthogonality conditions (6) (4) become 

where D is a block diagonal matrix in which the lower right corners of the diagonal blocks fall 
exactly on those elements d j j  for all indices j satisfying (5). Since C ~ A B  = CTBH = DH, and 
B ~ A ~ C  = B ~ C G  = D ~ G ,  we have the relation 



Since a block diagonal matrix times a upper Hessenberg matrix is block upper Hessenberg, it 
follows that G and H are block tridiagonal, with the partitioning defined by the cluster dimensions. 
This implies that in computing the coefficients hk,  g k  at.each stage, the only nonzero entries of 
hk and gk are those corresponding to the last two diagonal blocks of the part of D generated to  
date: that is, h;+,,k, ..., hit, ..., hkk are the only nonzero entries in vector hx,  where where j ,  j are 
the last two consecutive indices less than k satisfying ( 5 ) ,  and likewise for gk. 

In particular, if (5) were satisfied for every index j ,  then H and G would be scalar tridiagonal. 
So step 5 of Algorithm 1 would be empty, and step 4 would reduce to 

4. Enforce bi-orthogonality condition (2) by setting 

In this case with the current scalings, both H and G have subdiagonals a.ll equal to 1. By equating 
matrix elements in (9) it follows that G = H. If we instead scaled the vectors bk+l, ck+l to have 
unit norm, then G and H would be related by GT = H, as noted in [27, p388ffI. 

3. Application to Sequences of Polynomials 

We explore the following problem. Suppose we have two sequences of polynomials go, ql, ... 
and po,pl, ... of exact degree. And suppose there exists a real-valued bilinear functional b ( f , g )  
which satisfies some of the usual properties for an inner product 

and 

b(5f, g j  = b ( l ,  x g )  

for any real-valued functions f ,  g, h of x. The problem we would like to address is the problem 
of generating the q's to  be "ortlzogonal" with respect to b(., .) knowing only the "moments" 

where po is a constant polynomial. In the case tbat b(-, -) is an ordinary inner product (i.e. that 
b ( f ,  f )  > 0 for all nonzero f ) ,  this problem has been extensively studied. in the literature (see e.g. 
section 5 as well as [ll] and references therein). However, only recently has this problem been 
addressed for more general b ( . ,  .). In this section, we will show how the matrix Lanczos algorithm 
solves this very problem. This problem was addressed in [2] for the case that b ( . ,  a )  was a discrete 
sum over a finite number of knots. The resulting algorithm is equivalent to the "non-generic 
modified Chebyshev algorithm" in [12]. 

Since the polynomials p;, q i ,  are of exact degree they obey a recurrence formula 

and 
xqT = q T ~ p  



where 

and Z,,,Z, are unreduced infinite upper Hessenberg matrices. The p's and q's are also related by 
am infinrte upper triangular matrix of coefficients U :  

From the above definitions, we have that 

We are interested in exploring the relations between the the polynomials p o , p ~ ,  ... with qo,ql, .... 
We will make the simplifying assumption that the zero degree polynomials are scaled so that 
po = 40. Then (12) reduces to  

Z,U = uz, (13) 

The upper Hessenberg structure of Zp implies, among other things, that 

for every k, where u; denotes the i-th column of U. 

We have already defined the moments (10). We define the matrix S of "mixed moments" 

The first column sl of S is just the vector of moments [po,pl, ...IT. We use the extended notation 
S = b(p ,qT)  following [12], where b applied to a vector means that b is applied individually t o  
each element. By linearity we have that 

 quat ti on (16) reduces to  
z,Ts = sz* 

As with the U matrix, this impliesthat for all k 

where s i  denotes the i-th column of S. 

We now discuss some specific choices for the polynomials p and q. First of all, if the polynomials 
p; = zi are the LLmonomials,'7 then the recurrence matrix 2, reduces t o  the "shift-down" matrix 



In this case, the column u; of the matrix U will hold exactly the coefficients of the polynomial 
q;. And the moments Pi will be the usual classical moments with respect to the unknown bilinear 
functional b. 

If instead we choose the p's to be a sequence of orthogonal polynomials with respect with 
a Yusual" positive definite inner product, then the matrix Z p  will be a tridiagonal matrix, and 
with certain scalings, symmetric. In this case, the matrix Zp can be generated by the symmetric 
Lanczos algorithm ([8, 4, 141). 

In any case, the computations that we will describe below depend on having in hand the 
recurrence matrix 2,. 

Independently of the choice for the p's, we can make arbitrary choices for the 9's. If in 
particular we choose the q's to be "orthogonal" with respect to b(.,  .), then thethe corresponding 
matrix condition is that the matrix 

be diagonal. We then observe that the conditions (13), (17), (19) and the Krylov sequence 
conditions (14) and (18) exactly match the properties of the vectors generated by the Lanczos 
process when started with the matrix Z p  and right and left vectors ul = el and sl, respectively. It 
follows that if such a sequence of orthogonal q's exist, then the vectors generated by the Lanczos 
process will satisfy (19), and viceversa. However, if the matrix D resulting from the Lanczos 
process is only block diagonal, then no such complete sequence of orthogonal g's exists. 

We now discuss the computation of the leading finite-dimensional part of the above infinite 
vectors. Suppose we are given only the first 2m - 1 moments po, pl ,  ...pzm-2 as well as the leading 
2m - 1 x 2m - 1 part of 2, which we refer henceforth as Z for simplicity. Because of the lower 
Hessenberg form of zT, we know the first 2m - 2 entries in ZTsl, the first 2m - 3 components of 
( Z ~ ) ~ S ~ ,  and so on. Hence, we will know the leading anti triangle of the ~ r y l o v  sequence 

containing the leading m x m principal submatrix of (20). The vectors u l ,  u2, ... and sl,s2, ... 
satisfying (19) can be generated by applying an oblique Gram-Schmidt process to  the Krylov 
sequences (20) and 

span[u1, Zpul, 2 3 1 ,  - - a  ,I. (21) 

Due to the upper triangular nature of the vectors u;, the conditions (19) for the first m vectors 
involve only the first m entries of both the u and s vectors. 

The Lanczos process will generate a sequence of vectors ul,  uz, ... and sl, sz, .... With the first 
2m - 1 entries of sl known and ul = el, the Lanczos algorithm will generate at least the vectors 
ul, ..., u, and leading m entries of sl, ..., s,. Each polynomial qk will be defined in terms of the 
originally given set of p polynomials by the relation q k ( x )  = pT(x)~k+li ,  for I< .= 0,1,2, .... The 
moments involving q k  are the entries of sk+l: 

If k is an index such that 



then S ~ + I  will orthogonal to [ul , ..., uk]. Because of the upper triangular structure of U, this means 
simply that the first k entries of (22) will be zero. Note that this is a condition involving only 
finitely many leading entries of (22). So for such indices k, the polynomial qk will be orthogonal to  
ad polynomials of lower degree, with respect to b(., .). The condition that D = sTIJ be diagonal 
is equivalent to condition that (23) hold for every k, which implies that S will be lower triangular. 
If D is only block diagonal, then (23) holds for only certain values of k,  corresponding to the ends 
of the diagonal blocks. In this case S will be block lower triangular. 

4. Algorithm Based Error Correction 

A standard problem in ABFT [16, 171 is the correction of errors in a data sequence given a 
collection of checksums. This problem can be expressed in terms of sequences of polynomials as 
described in the previous section. In the error correction problem, we have a data sequence 

and a collection of checksums 

C1r C2r - . . r  Cm, 

where each checksum c j  is a weighted sum of the data values 

for some set of functions pj defined over a set of distinct knots x; .  In the literature, the typical 
set of functions are the monomials pj = xj, and the knots proposed have been xi  = i [20] and 
2i = 2i-1 [17]. However, it will be seen that when the techniques of the previous section are 

used, the p7s may be any sequence of polynomials of exact degree, and the knots may be any 
set of distinct points. In [I, 51 a simple modification to this technique was presented that allows 
correction also among the checksums. In brief, this is accomplished by appending a set of parity 
values to the original data values, and then carrying out the entire computation, including the 
computation of the checksums, on the cornbilled set of values. The parity values are chosen just 
to  make the true checksums identically zero, so that in fact the checksums themselves may be 
completely omitted from the entire computation. In this paper, we do not discuss parity values 
any further, though all the methods of this paper still apply if we consider m of the data entries 
(24) to be parity values chosen to make the checksums (25) identically zero. 

Suppose that during some process involving computation or transmission, the data items 
become corrupted to the erroneous sequence 

The error correction problem is then to compute the errors w; = (a; - a ; ) ,  from which we may 
recover the true values ni .  For this purpose, we compute the syndromes 

To express this problem in terms of sequences of polynomials, we define the bilinear functional 



Then the syndromes are given by (10). 

Lemma 1. Let k be the number of errors (w values) and denote the nonzero errors by 

Then there is a unique (up to  scaling) polynomial r ( x )  of lowest degree such that 

for ad polynomials f of degree up to k - 1, and the degree of r is k: On the other hand, if q ( x )  is 
any nonzero polynomial of degree I satisfying 0 = b( f ,  q) for all polynomials f of degree a t  most 
rn-1, then either k < 1 or k >_ m +  1. 

Proof: The polynomial 
T ( X )  = ( X  x i l ) . . . ( x  x i k )  (29) 

is a polynomial satisfying (28). Define the Lagrange interpolating polynomials {ti) of degree k - 1 

If s(x) were a polynomial of smaller degree satisfying (28)) then b(tj, s) = 0 for each j .  But that 
means s ( x ; , )  = 0 for each j ,  contradicting the assumption that s has degree less than 6.  

If ?(x) were a second such polynomial of degree k, also scaled to be monic, then s = i; - r 
would be a polynomial of smaller degree, also satisfying (28), so again we have a contradiction, 

For the second part, if k 5 m then 0 = b(tj, q )  for each t j  (since they have degree < m) so 
that  q ( x i j )  = 0 for each j = 1, ..., k. So q must have degree 1 2 k. 

The polynomial r ( x )  (29) is called the "error locator polynomial," and it satisfies the following 
proposition, easily demonstrated from the above Lemma: 

Proposition 1. For any m 2 k - 1, the error locator polynomial (29) is the unique polynomial 
(up t o  scaling) of lowest degree satsifying (28) for all polynomials f of degree up t o  m. The degree 
of r ( x )  is k and the zeroes of T are the knots corresponding to the nonzero w values. 

In the previous section we considered a starting sequence of polynomials {po ,p l ,  ...} and a 
second set to  be generated {qo,  q1 , ...I. In this section we have already defined a sequence of poly- 
nomials po,pl, ... used to fix the checksum coefficients (26). We now propose to consider a second 
sequence of polynomials of exact degree qo, ql, ..., and we consider the problem of determining 
r ( x )  in terms of the 9's. 

Express the error locator polynomial in terms of the q's and a coefficient vector r: 

Then condition (28) is equivalent to  



This can be written in terms of the mixed moments s, (15): 

Proposition 1 guarantees that (31) has a solution with r k + l  # 0, and the solution is unique once 
rk+l is fixed. 

If the number k of errors is unknown in advance, but it is known that k 5 m for some given 
number m, then Proposition 1 guarantees that the error locator polynomial is determined by 
condition (28) for k = 0,1, ... , m - 1. So we need to solve the following overdetermined set of 
equations 

or expressed in terms of the mixed moments: 

where k is the smallest value of the index for which these equations have a solution. The system 
(32), when ~ k + 1  has been fixed, is an overdetermined system unless k = m. 

If the q's are generated by a Lanczos procedure, then the resulting vectors sl, sz, ... will be 
lower triangular, and linearly independent. At some stage k, the vector s k + l  will be zero, so that  
(321 will have the trivial solution 

From (30), that means r ( x )  q k ( x ) .  

Suppose that only the first I syndrome values $11, ..., s n  are known. Since the s vectors are 
being generated by the lower Ressenberg matrix z;, only the first 1 - 1 entries of sa can be 
computed, only the first 1 - 2 entries of SQ can be computed, and in general only the first 1 - j + 1 
entries of s j  can be computed for j = 1,2, ... . Hence, to compute the first m entries of the vector 
s,+l as in (32) requires knowing only the first I = 2m entries of sl. 

If the Lanczos algorithm is used, sm+l is guarenteed to be zero by Proposition 1, but we need 
the leading (rn + 1) x (m + 1) part of U and the leading ( rn  + 1) x rn part of S t o  enforce the 
bi-orthogonality conditions and to recover the m2th degree polynomial q, = r ,  assuming m errors 
have occured. To generate the leading part of S mentioned requires the first 2m elements of sl, 
as before. Hence in either case, we can conclude that only I = 2m syndrome values are required 
to  determine up to  m errors among the data.. 



7.  Numerical Example 

We illustrate our method with a numerical example using the Chebyshev polynomials to  generate 
the coefficients and the knots. In printing the numbers, we have rounded them t o  the digits 
shown, even though the computations were carried out in a precision of about 16 decimal digits 
on a Sun using Lisp. 

Example 1. The first three Chebyshev polynomials are 

and it is well known that the subsequent polynomials are generated by the three term recurrence 

The first 9 polynomials po(x),pl(x), - .  .,p8(x) are related via the recurrence (11) with the tridi- 
agonal recurrence matrix 

The knots are chosen as the zeros of ps, which are the sa.me a.s the eigenvdues of 2,: 

x1 = cos 15r/16 = -0.980785 x5 = cos 7n/16 = +0.195090 
x2 = cos 13n/16 = -0.831470 xs = cos 5n/16 = f 0.555570 
x3 = cos l l n / 1 6  = -0.555570 x7 = cos 3n/16 = +0.831470 
xd = cos 9 ~ 1 1 6  = -0.195090 xs = cos ~ / 1 6  = fO.980785 

We also allow for up to 3 errors, requiring 6 syndrome values. Thus the matrix {pjj-l(x;)} in (26) 
is given by 

The first three vectors in the Krylov sequences (20) and (21) are respectively given by 



where the first column in the first sequence above is the vector of given syndrome values defined 
by (27), and the symbol "x" stands for entries depending on the further syndrome values that 
we do not have available. The Lanczos process will generate the respective sequences 

where j 2 2. Note that $3 is all zero, so number k of errors equals 2. The error locator polynomial 
(29) is determined by the entries of us: 

The zeroes of this polynomial are xz = -0.8315 and x5 = 0.0195, indicating that the nonzero 
error (w-values) are w2 and u s .  We can then extract the corresponding columns from equation 
(27) to obtain a 2 x 2 system which we then solve for those w-values: 

-2.0000 1.0000 1.0000 
(-2.4433) = (-0.8315 0.1951) (~i) yielding the solution -4.0000 

8. Conclusions 

We have illustrated the close connection between a variety of methods in different problem 
domains: the Lanczos Algorithm in linear algebra, sequences of polynomials in the theory of 
moments, the error correction problem in Algorithm Based Fault Tolerance, The close relations 
among these methods yield very simple descriptions of the methods in the various domains. 
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m T .  The resolution of the frequency utilizing the Fourier Trans- 
form on a time-dependent signal is generally considered to be restricted to 
the inverse of the length of rhe time interval. This suggests that a one 
second long signal will permit a frequency resolution of 1 Hz. 

A much more precise determination of the frequency is possible by a 
careful review of the phase when the source has an unknown narrow-band fre- 
quency. For purposes of the analysis presented herein, narrow-band frequency 
implies a bandwidth less than the normally interpreted frequency resolution. 
The phase of the cross-spectral density of successive time intervals. indicates 
the difference between the Fast Fourier Transform (FFT) frequency resolution 
and the frequency of the input signal. Since this calculation is a trivial 
step after the calculation of the FFT, this method can 'be easily implemented 
on real-time systems using existing hardware for the FFT. 

This method has been applied to the acoustic data obtained from a heli-. 
copter. .The improved analysis of the Doppler shift of the frequency for the 
moving aircraft permitted a good estimate of the velocity of the approaching 
helicopter and its range at the closest point of approach using one microphone 
on the ground. 

INTRODUCTION. The standard FFT calculates the amplitude and phase at 
equal increments in the frequency domain as determined by the formula 

where 

A f  - frequency resolution of the FFT 
At - time interval length from which the FFT was derived 

This inverse relationship between the frequency resolution and the length of 
the time internal being analyzed has led to the belief that it is not possible 
to obtain accurate frequency resolution over short time intervals. However, 
the resolution constraint in Equation 1 is not applicable if the phase rela- 
tionship among successive time intervals of length At is predictable (not 
random). An example of such a situation occurs when the frequency is unknown 
but has a bandwidth less than Af. 

* Supported by Headquarters, US Army Corps of Engineers. 



In the case of a narrow-band source signal, the phase term in the fre- 
quency domain permits the accurate calculation of the frequency of the input. 
For the purposes of this paper, ttnarrow-band" refers to a signal. bandwidth 
that is much smaller than the normal frequency resolution Af of the FFT as 
defined in Equation 1. The concept behind the increased resolution can be 
easily understood by considering how one cosine wave would best fit another 
cosine wave of a slightly different frequency. 

CURVE FITTING OF TWO COSINE WAVES. Suppose that we are given a time 
signal that: is a 5.2-Hz cosine wave. What would be the best least-squares fit 
of a 5-Hz cosine wave of arbitrary amplitude and phase over the time interval 
[0,1]? The least-squares error is achieved by perfectly aligning the two 
curves at the midpoint o f  the time interval and permitting equal magnitude 
(but different sign) errors at the two endpoints. This means that the best 
fit of a 5-Hz cosine wave over [0,1] is achieved with phase 0.1 cycle and 
amplitude close to one. This situation is displayed in Figure 1. 

Similarly, the best fit of the 5.2-Hz cosine wave by a 5-Hz cosine wave 
over the time interval [1,2] is with phase 0.3 cycle and amplitude close to 
one (see Figure 1). The difference between the phases of the 5-Hz fit on 
succeeding time intervals is 0.2 cycle. The simple geometry of the situation 
guarantees that the phase difference over any two adjacent one second long 
time intervals will always be 0.2 cycle for the 5.2-Hz cosine wave being 
approximated by a 5-Hz wave. 

APPLICATION TO FFT. The FFT calculation over any 1-sec interval will 
attempt to fit (in a least-squares sense) integer frequency cosine waves to 
the input signal. The previous heuristic argument shows that, if the input 
signal was a 5.2-Hz cosine wave, the difference (0,2 cycle) in the 5-Hz phases 
of consecutive 1-sec intervals is 0.2 Hz more than the 5-Hz FFT value. 

DEFINITION OF THE CROSS-SPECTRAL DENSITY. The cross-spectral density 
(CSD) at time t of frequency f is defined to be the product of two complex 
numbers : 

where 

* -,denotes the complex conjugate operator 
X , ( f )  = complex FFT for frequency f where the FFT was applied to 

amplitudes recorded over the time period [t,t+l] 

This definition provides obvious relationships between the FFT and CSD: 



Amplitude 

Phase 

THE KEY FORMULA. The curve-fitting analogy presented previously sug- 
gests that the phase of the cross-spectral density (when measured in cycles) 
defines the difference between a narrow-band. (less than hf bandwidth) input 
frequency and the FFT analysis frequency f (both measured inhertz). In the 
general case where the FFT intervals could have length different from unity, 
the formula becomes: 

Flequency(Hz) = f + CsD Phase (cycles) of f Hz 
Length of FFT intervals ( sec ) 

where f is the frequency with the largest CSD amplitude and the phase of the 
CSD is between -0.5 and +0.5 cycle. 

Proof :  

Assume the signal x ( t )  has amplitude A,  frequency /3 Hz, and phase 
4 cycles. Then 

The FFT over the time interval [(n-l)At,nAt] of length At at the fre- 
quency f-k/At, where n and k are positive integers, is 



nieaU1* e z ~ i ~ p ~ t - t ~  - ari 8-- (-At) - - ( ] 

The CSD at time n A t  at frequency f-k/At is 



This means that the CSD at frequency f of an input signal of amplitude A 
and frequency B measured over FFI: time intervals of length At is independent 
of both the phase of the input signal and also the time when the FFT analysis 
is performed. The CSD amplitude and phase terms are constant. 

Amplitude 

ICSD(f) I = A ~ [ I  - cos ( 2 x p A t ) l  
2x2(f - P I 2  

Phase (measured in cycles) 

Equation 6 clearly shows that the frequency f that yields the largest ampli- 
tude will be the frequency that is closest to the frequency f i  of the input. 
That frequency f is the value that yields a CSD phase of absolute value less 
than or equal to 0.5 cycle. For this frequency f, phase Equation 7 can be 
rewritten as 

to define the frequency of the input signal in' terms of the FFT analysis fre- 
quency f, the phase of the CSD, and the length of FFT time window. 

Q . E . D .  

APPLICATION TO DOPPLER SHIFT. The high resolution of frequencies over 
short time intervals has an important application to the acoustic signature 
analysis of the doppler s h i f t  of moving objects (see Weidner and Sells, 1965). 
Figure 2 shows the expected Doppler shift of a moving acoustic source ( e . g .  
aircraft). This graph displays the frequency shift that would be recorded by 
one microphone. The principal assumptions on the acoustic source that apply 
to these calculations are that it emits a constant basic frequency (i.e. 
frequency in the source reference frame) and it is moving in a straight line 
at a constant velocity. 



The formulas (see Olson and Cress, in preparation) that determine the 
basic Erequency (i.e, frequency before Doppler shift), velocity, and range at 
the closest point of approach (CPA) all require an accurate knowledge of the 
frequency: 

where 
fa - the far-field approaching frequency 
f, = the far-field retreating frequency 
f, - the basic acoustic frequency of the source 
C - the velocity of sound 
R - the range of the source to the microphone at CPA 
V - the velocity of tha t  source 

In this example, the accurate calculation of the slope near CPA requires 
the accurate knowledge of the Erequency calculated over short time intervals. 

MOVING HELICOPTER DATA. Acoustic measurements were made of a moving 
helicopter travelling in a straight line at a near-constant velocity. The 
standard FFT analysis was applied to 1-sec time intervals. Figure 3 displays 
the FFT amplitud&s of the first 59 Hz for all 135 sec of the recording. The 
high-resolution frequency analysis and Doppler shift formulas were applied to 
the acoustic signal generated by the main rotor blades that, with the FFT 
analysis, showed an approaching frequency of near 19 Hz and retreating fre- 
quency near 16 Hz. (The description of the acquisition and analysis of the 
field data is covered more fully in Olson and Cress, in preparation). 

The high-resolution frequency analysis was performed on the approaching 
signal in the time interval [30,45] from 30 to 45 sec. The CSD predicrions of 
frequency at 1-sec increments are displayed in Figure 4. The individual fre- 
quencies remained consistently near 19.1 Hz during the time from 37 to 44 sec- 
ond. The complex vector sum of all the individual CSD measurements (see Olson 
and Cress, in preparation) yielded an estimate of 19.10 Hz for the far-field 
approaching frequency. Similarly, the far-field retreating frequency was 
calculated to be 15.65 Hz during the time interval [90,105]. Applying these 
numbers to Equation 9 yielded an estimate of 17.21 Hz for the basic frequency. 
This agrees with the known basic frequency of 17.2 Hz for that helicopter. 
The application of the approaching and predicted basic frequency into the 
velocity (Equation 10) yielded and estimate of 35.0 m/sec - -  slightly above 
the 33.5 m/sec velocity reported by .the pilots (but less than the 36.0 rn/sec 



calculated by some global positioning system (GPS) data recorded in the 
helicopter). Hence the velocity measurement obtained by analyzing the fre- 
quency of the Doppler shift appears to be very accurate. 

The analysis of the frequency was made as the helicopter passed the CPA 
during the time interval [60,75]. At the time when the helicopter is passing 
CPA there is no Doppler shift (i.e. it is sending out the basic frequency, 
17.2 Hz for this data) . The high-resolution CSD frequency analysis of the l- 
sec FFT intervals is displayed in Figure 5. The constant line of the basic 
frequency at 17.2 was added to aid in the determination of when the sound of 
CPA reached the microphone. The intersection of this constant line with the 
frequency curve just after 71 sec into the run defines this event. Interest- 
ingly, the high-resolution frequency technique is sufficiently accurate to 
display a near-constant slope for a f e w  seconds before CPA. This means that 
it would be possible to use the slope of the frequency a few seconds before 
CPA to guess the slope at CPA in Equation 11. This approach was applied to 
obtain Figure 6. Clearly the agreement between the CSD prediction and the 
range reported by the pilots is good. Also reasonable estimates of the anric- 
ipated range at CPA were obtained even before the helicopter reached CPA. 
These estimates could not: be obtained by only using the standard FFT 
techniques. 

COSTS FOR IMPLEMENTING THE NEW TECHNIQUE. The extreme simplicity of the 
calculation beyond the traditional FFT calculation has some surprising bene- 
fits! First no additional computer hardware should be required beyond that 
needed to perform the FFT calculation. Also, only a minuscule amount of addi- 
tional CPU time should be required to perform the calculations. 

CONCLUSIONS. On real data the CSD provides a significant improvement 
over the conventional use of the FFT in-the accuracy of frequencies over short 
rime intervals. The phase of the CSD resolves the frequencies between the 
traditional FFT frequency increments. In the case of a single constant 
frequency and no noise, the CSD is completely accurate over any length of 
interval. On the real acoustic data of a moving helicopter the CSD high- 
resolution frequency analysis appears to be accurate to within 0.1 Hz. This 
high accuracy when combined with the analysis of Doppler theory permitted 
accurate prediction of the velocity and range at CPA from one passive micro- 
phone with minimal extra computing cost. The accurate frequency analysis of 
measured time-dependent signals over short time intervals should have many 
other scientific applications. 
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Figure 1. Curve fitting of a 5.2-Hz cosine wave by two 5-Hz cosine 
waves of phases 36 (0.1 cycle) and 108 degrees (0.3 cycle). 

Note: The 5-Hz and 0.1-cycle curve is the best FFT fit of the 5.2-Hz and 0 . 0 -  
cycle signal in the time interval [0,1]. Also, the 5-Hz and 0.3-cycle curve 
is the best FFT fit of the 5.2-Hz and 0.0-cycle signal in the time interval 
[1,2]. The difference, 0.2 cycle, between the two phases of the two 5-Hz FFT 
curves is caused by the fact that the frequency of the signal being fitted is 
0.2-Hz different from those 5-Hz FIT curves 
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The Arithmetic Fourier Transform (AFT): Iterative 

Computation and Image Processing Applicationst 
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Abstract 

A Fourier analysin method ueing an iterative Arithmetic Fourier Traneform 
(AFT) ia presented. It mereornee the d icu l ty  of dense, Farey-fraction Ham- 
pliig which is inherent in the original AFT algorithm. This disadvantage of 
the AFT is turned into an advantage and dense frequency-domain samples are 
obtained without any additional interpolation or xerwpaddiag. The implemen- 
tation of the iterative computations is designed to preserve the advantage of 
the AFT for VLSI Implementation by uaing a permuted diierence codcient 
shcture .  This iterative AFT ie intended for cases in which (a) the function to 
be analyzed can only be sampled uniformly and at a rate cloae to the Nyquist 
rate or (b) dense frequency-domain sample8 are needed. 

The one and two dimensional versiona of the diserete cosine transform (1-D 
DCT) and (2-D DCT) can  be simply computed wing the 1-D and 2-D AFT, 
but dense, Farey-fraction sampling in the image domain ie then required. And 
it aleo requires epecial computatione for the marginal DCT values. 

Theee difflculties can be overcome by the iterative 1-D or 2-D AFT. Dense 
samples then occur in the transform domain where they c a n  be advantageously 
used for parameter estimation or the determination of a few principal comp* 
nenta. 

 hie reeearch waa eponsored by the SDIO/IST, managed by the Army Reeearch Office under Contract 
DAAM3-86-K-0108, Donald W. Tufts, Principal Investigator. 
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INTRODUCTION. The Arithmetic Fourier Transform (AFT) is an algorithm for ac- 
curate high speed Fourier analysis and narrow-band filtering. The arithmetic computations in 
the AFT can be performed in parallel. Except for a small number of scalings in one stage of the 
computation, only multiplications by 0, +1 and -1 are required [I]. Thus the accuracy of the 
AFT is limited only by the analog-tedigital conversion of the input data, not by accumulation 
of rounding and coefficient errors as in the Fast Fourier Transform (FFT). Furthermore, the 
AFT needs no storage of sine/cosine coefficients aud does not requires complicated memory 
addressing. These properties of the AFT make it very suitable for VLSI implementation of 
Fourier analysis [4]. 

In early part of this century, a mathematician, H. Bruns, found a method for computing 
the Fourier aeries coefficients of a periodic function using Mobius inversion [2]. Later in 1945, 
another mathematician, Aurel Wintner, reconsidered this technique and developed an arith- 
metic approach to ordinary Fourier series [3]. Tufta and Sadasiv discovered the same algorithm 
and named it the Arithmetic Fourier Transform (AFT) [I]. They showed how parallel compu- 
tations and efficient communication and control are built into the algorithm and pointed out 
its applications in fast Fourier analysis, narrow-band filtering, and beam-forming. Reed et  al.  
have studied the Fourier analysis and signal processing using the AFT [4] and used a simple 
interpolation scheme to realize their extended AFT. The original Bruns' method has also been 
studied to provide more balanced computation for the even and odd Fourier series coefficients 

[5]. Boudreaux-Bartels et al. have analyzed the effect of sampling-time errors in the com- 
putation of the Fourier coefficients using the AFT and carried out a preliminary comparison 
with the method of summation by parts (SBP) [6]. Tufts et a1. have extended the AFT to 
the tw~dimensional case for use in image processing [7]. Fischer et al. have considered the 
analog/digital VLSI implementation of the AFT with switched capacitors [8]. The advantage 
of performing the AFT analysis on delta-modulation representations of functions is also being 
investigated [9]. 

Recently, a proposed method of approximately realizing the AFT by successive approx- 
imation waa presented by Weiping Li [lo]. His method is closely related to the least mean 
squares (LMS) successive approximation realization of the Discrete Fourier llansform (DFT) 
of Widrow et al .  [ll]. Using Weiping Li's adaptive method, only N time-domain data samples 
are required and about N2 frequency-domain samples are obtained. This is in contrast with 
the driginal forward use of the AFT algorithm in which about N2 tirne-domain samples are 
required to compute N frequency-domain samples [12], The computations involved in this 
sequential AFT method are the same as those in the AFT, namely, acaling by inverse-integer 
factors and accumulation. The number of iterations of this sequential method depends directly 
on the input data length N and there are difficulties about the convergence of the approxima- 

tion process to a result which is consistent with a zero-padded DFT. This can be seen from 
the example in Weiping Li's paper [lo]. 

In this paper, a different iterative AFT algorithm is presented. This algorithm uses a data 
block of N samples to iteratively compute a set of about N2 frequency samples. Each iteration 
uses the error information between the observed data and data synthesized using the original 
AFT algorithm [I]. If started with a properly synthesized data vector, the algorithm will con- 



verge and give the AFT values at the Farey-fraction arguments which are consistent with the 
values given by a zer+padded DFT. Therefore, it effectively overcomes the difficulty of dense, 
Farey-fraction sampling by iterative use of the AFT. Dense frequency-domain samples are o b  
tained without any interpolation or zer~padding. The implementation of this iterative method 
also preserves the advantage of the AFT for VLSI implementation by using a permuted dif- 
ference coefficient structure (PDC) [13] to provide simple computation of the updated Fourier 
transform vector. PDC is equivalent to the mathematical formulation known as Summation 
by Parts (SBP) which is a finite difference analog to the integration by parts reformulation of 
an integral found in any standard calculus book [26, 23, 271. The arithmetic computation of 
this iterative AFT has a high degree of parallelism and the resulting architecture is regular. 
Because of its simplicity, this iterative AFT method could be of interest in many applications 
such as phase retrieval [14, 151, twmdimensional maximum entropy power spectral estimation 
[17] and recursive digital filter design [18], where many Fourier transform and inverse Fourier 
transform calculations are required. The iterative AFT method could be naturally used with 
the AFT in these applications to perform the Fourier analysis efficiently. 

In Section 2, the block iterative computation of the AFT is discussed. In Section 3, the 
determination of the minimum norm solution for the frequency-domain samples using the 
steepest descent method is addressed. Then in Section 4, the minimum norm solution is 
used to obtain the Fourier transform solution. Example of the iterative computation of an 
oversampled Fourier transform is presented in Section 5. In Section 6 we present illustrate 
application of AFT for the computation of Discrete Cosine Transform. Section 7 concludes 
the paper. 

BLOCK-ITERATIVE COMPUTATION OF THE AFT. In order to compute N 
uniformly spaced time-domain samples z[n] using the AFT, we require F frequency-domain 
samples x[$] , of the Fourier transform of z[n], at the Farey-fraction values of $ [19]. The 
samples x[n] and x[&] are related by 

with m =  l , . . . , N ;  k = o , . . . , m - 1  . 
The Farey-fraction sequence of order N is defined as the ascending series of irreducible rational 
fractions between 0 and 1 (both inclusive) with denominators which do not exceed N [12]. For 
example, the sequence of Farey-fractions of order 5 in the interval [O,1] are 

The total number F of frequency-domain, Farey-fraction samples in the interval [O,1] corre- 
sponding to N time-domain samples can be estimated 



That is, much denser frequency-domain samples are needed for the AFT than the conventional 
inverse discrete Fourier transform (IDFT). The dense, Farey-fraction samples in the frequency- 
domain are useful rational approximations. Given any real frequency value f ,  we can always 

k find a 'nearby" Farey fraction & of order N which gives the approximating error e/ = I f  - ;( 
bounded by h. If m > P, the error compares well with the approximate approximating 

error bound & resulting from the same number of uniformly spaced DFT frequency-domain 
samples [19]. 

Formula (1)  can be expressed in a matrix form as 

where C is an F x N matrix whose ith column is the cosine function cos(2xit) sampled at 
values of t which are Farey-fraction values k. The vectors x and X are defined as 

with T denoting the vector transpose operation. The elements X[O] to x[?] are arranged 
according to the order of the increasing Farey-fraction values $. Then according to the AFT 
algorithm by Tufts and Sadaaiv [I], we can get 

where indicates the integer part of { and p[m] is the Mobius function [19] defined on the 
positive integers by 

1, if m = l ;  
(-I)', i f  m = pl pz . p,, where pi are distinct primes; 
0, if p21m foranyptimep. 

(7) 

where the vertical bar notation p21m means that the integer p2 divides the integer m exactly 
without remainder. The function s[n] of the integer argument n is defined by 

Because p(m) in (7) only takes on values +I, -1 and 0 and s[n] in (8) can be easily computed 
with summation and scaling, fofmula (6) provides a very simple way of determining x[n] from 
samples of x[*] in the AFT [I]. 

When given N uniformly spaced time-domain samples z[n], we can determine the frequency- 
domain samples x[A] at the Farey-fraction values & by iterative use of the AFT. From (6) 
and (8) above, we can relate x[n] and x[:] by the AFT matrix A as 



The AFT matrix A has dimensions of N x F and rank N. The AFT matrix A  for N = 5 is 

A is sparse and its nonzero coefficients are all proper fractions with numerator 1 and denomi- 
nators which are all integer numbers. 

If N > 2, then F > N and the augmented matrix (A : x) has the rank N. There is then 
an infinite number of solutions of X in (9) for a given x. The Fourier transform vector X 
of formula (3) and the minimum norm vector are two special solutions of (9). The minimum 
norm vector is defined as 

&* = A = ( A A ~ ) - ~ ~  = &- (11) 

where M = A ~ ( A A ~ ) - '  is the matrix which provid~minimum norm solution. This solution, 
in general, is not equal to the Fourier transform solution. 

The steepest descent algorithm has been widely used for solving least squares problems in 
adaptive signal processing [21]. It can also be used for solving our minimum norm problem for 
X+ if we properly choose the initial vector &. Then the minimum norm solution s* can be 
used to determine the Fourier transform vector _X. Let zk be the kth approximation to Xt 
and the synthesized signal a = Axk,  then the approximation error vector is given by 

The squared norm of the error vector is 

We update the vector of frequency-domain samples by the steepest descent method 

where a! is the step factor of the updating and 

is the gradient of Ek. Formula (15) can be substituted into (14) to give the following two 

additional forms of the updating procedures: 



and 
= Xi + 2 c u ~ = ( ~  - AXk) = Xk + 2 a ~ ~ ~  (17) 

* 

In next section, we will show that starting with a properly chosen initial vector &, the 
iterative updating process defined by (14) or (16) will converge and give the minimum norm 
solution X*. Then the minimum norm solution X* can be used to determine the Fourier 
transform vector X. 

CONVERGENCE TO TWE MINIMUM-NORM SOLUTION. Starting with an 
initial vector Xn, we can successively use formula (16) to write the kth approximation Xk in 

the following way 

In our case, if N > 2,  AT^, which has F rows and F columns, is only positive semidefinite. 
The matrix A has rank N and N < F .  Using the singular value decomposition (SVD) [25], A 
can be written as 

A N ~ F  = U N ~ N ~ N X P V F ~ F  (19) 

where U and V are ( N  x N )  and ( F  x F) orthogonal matrices, respectively, C is an (N x F) 
paeudediagonal matrix which haa the form 

The square (N x N )  matrix 2 is a diagonal matrix composed of the non-zero 'singular values 
ui, i = 1,2,. . . , N, of the matrix A and 6 is an (N x (F - N)) zero matrix. The matrix 
(I - 2 a ~ ~ A ) ;  is therefore 

where the (N x N) matrix D has the form 

& N x ( F 4 N )  and O p - N ) x N  are zero matrices, and I ( F - N ) x ( F - N )  is an ( F  - N )  x ( F  - N) 
identity matrix. Because of 1, the first term in (18) will not converge to the zero vector for any 
a. But if we choose the initial vector & to be the zero vector, Q, the first term will have no 
effect on the iterative procesa (18) and then we can show that the iterative procesa converges 
to the minimum norm solution. 



Considering the matrix (I - ~ ~ A ~ A ) ; A ~  in the aecond term of'(18), we get 

where D' is an (N x N) diagonal matrix with the (j, j)th element being (1 - 2ac~;)'a~. If we 
choose the step factor a in the range 

where DL, is the biggest eigenvalue of A ~ A ,  then 

k i 

since this is an infinite sum of a geometric series with the ratio r = (1 - 2aaf) and Irl c 1. 

Therefore the matrix D~ will approach the zero matrix and we get 

and 
k- 1 

201 lim (I - Z ~ A ~ A ) ' A ~  = V 
k+m r=O . [ K ] u r .  

Since the matrix AA' can be written as 

and thus 
2' -1 - u ~ 2 ) - l u T  (AA - ( (29) 

Therefore, the pseudoinverse matrix which provides the minimum norm solution of formula 

From (27) and (30) we see that 

k - 1  

20 lim (I - ~ ~ A ~ A ) ' A ' ~  = A' ( A A ~ ) - ' ~ .  
k+w t=O . 

That is, the minimum norm solution can be computed iteratively. 

OBTAINING THE FOURIER TRANSFORM SOLUTION. The difference of 

the Fourier transform solution and the minimum norm solution is determined by 



where the matrix P is defined as 

and C is given in (3). Considering the initial vector given by 

we have 
AX, = A P ~  = A(C - A ~ ( A A ~ ) - ~ ) ~ .  (35) 

The matrix multiplication AC is the original AFT operation [I] and AC = I with I being an 
(N  x N) identity matrix. Thus we get 

for any input x. Therefore, if started with this initial vector, the kth approximation in (18) 
will be 

k- 1 k-1 

xk = & + 2 9  C(I - ~ ~ A = A ) ' A ~ ~  = Pz + 2 0  C(I - Z O A ~ A ) ' A ~ ~  
i = O  i=O 

(37) 

and we have 
k- 1 

lim & = & + 2a lim x(1 - ~ ~ A = A ) ' A ~ &  = Cza 
k d r n  k+m 

i = O  

Thus, the convergence of the iteration process (18) will not be affected by this properly chosen 
initial vector, and the final result is the the Fourier transform vector X_. In fact, from formula 
(36) above, & cannot pass the AFT filter and can be computed independently in parallel with 
the iterative process. 

Therefore, we can realize the iterative arithmetic Fourier transform using the scheme shown 
in Fig. 1 and the steps of the iterative Arithmetic Fourier transform algorithm can be specified 
as follows: 

1. Specify the maximum tolerance in the squared norm Em of the error vector 9 or specify 
a maximum number of iterations; 

2. Calculate the initial fiequency-domain vector & = Px where x_ is the signal vector in 

(4); 

3. Synthesize the time-domain signal vector xk = AXk using the AFT filter; 

4. Calculate the error signal vector ek = x_ - 3 and squared norm Ek; 

5. Update the frequency-domain vector Xk+l = X k  + 29AT%; 

6. Repeat steps 3 - 5 by incrementing.the iterate index k until a satisfactory convergence 
(Ek 5 Em) has been achieved or the maximum number of iterations have been completed 



Figure 1: Block diagram of the computation of the iterative arithmetic Fourier transform 

The switch 8 can be closed at the first step (k = 0) in order to obtain the initial frequency- 
domain vector & = Px. However, the computation of Px can also be carried out in parallel 
with the iterations and added to Xk when the iterations cease or even at an intermediate time. 



Alternatively, the iterations can be started with the zero vector in step 2. We have shown 
above that the solution component Px is orthogonal to the row subspace of A. It can be 
computed in parallel with thee iterative computation of the minimum-norm solution (formula 
(11)) of the AFT equations (formula (9)). The contribution Px_ to the solution can then be 
added at any convenient time. 

Since the computation of 3 = A% in this algorithm can be easily realized by the forward 
AFT and only needs multiplications by 0, +I, -1 and a small number of scalings, most mul- 
tiplications required in this iterative method arise from the computations of and Px. 
Based on the properties of the AFT matrix A and the difference matrix P, the computation of 

and Px can be implemented with only few multiplications by using a permuted difference 
coefficient (PDC) structure [13, 23, 261. 

EXAMPLE 1: ITERATrVE AFT. As an example of the iterative AFT, we calculate 
the transform of a signal x[n] = cos(2rfin) + cos(2xfin) with n = 1 , 2 , - - - ,  10 and fl = 0.1, 
f2 = 0.2. There are 33 elements in the corresponding vector & of Farey-fraction frequency- 
domain samples. In Fig. 2, the solid line represents the values of the continuous function X(f) 
defined by 

N 

X ( f )  = z[n]coe(2r - n f). 
n= l 

(39) 

x[&] defined in formula (1) are samples of X ( f )  at Farey fraction values $. The values of 
the iterative AFT at different iterations are shown by the asterisks. The squared time-domain 
error norm Ek and the squared frequency-domain error norm Ef (k) are plotted in Fig. 3 as 
functions of the iteration number k, where the squared frequency-domain error norm is defined 

for . j =  0,1 , - .* ,m;  m = 1 , 2 , - - - , N .  

The values of the squared norms in the time and frequency domains, defined by formulas (13) 
and (40)) respectively, are different, even at the same iteration, because of the Farey-fraction 
sampling in the frequency domain. The initial AFT spectrum is determined by & = Px. 
 rob Fig. 2 and Fig. 3, we can see that after several iterations, the iterative AFT quickly 
reduces the squared error norms and the results converge to the DFT values. 

COMPUTATIONAL COMPLEXITY. Since the computation of the iterative AFT 
is based on successive approximation, it is clear that the accuracy and the computational com- 
plexity of the algorithm depend on the iteration number k. In Table 2, we provide the number 
of Farey-fraction frequency-domain values Nj as a function of N,  the number of elements in 
the time-domain vector x for N = 10 to N = 26. Also tabulated are the corresponding values 
of N,,,, N, and N,. These are each the number of different values of multiplication coefficients 



Initial Am Values 

I 
A F T  Values at Itera~ion 1 
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Figure 2: Transforms of iterative AFT and DFT 

required for direct matrix-vector product implementation of the computations of the minimum- 
norm solution =- of formula (ll), the additional solution component Px_ of formula (32), and 
the direct DFT computation Cx of formula (3), respectively. Since Ni increases with N at 
a rate about N2/3, the numbers of multiplications required in direct implementation without 
iteration also increase very fast with the number of elements, N,  of the time-domain data 
vector. 

The use of the iterative approach to compute Ik& reduce the number of multiplications 
related to N ,  in Table 2. In each iteration we need (N - 1) scalings by integer numbers in 
the computation A& and about N multiplications in the computation A ~ ~ .  Therefore, in 
k iterations, about 2 k . N multiplications are required. Since N,,, varies with N at a rate of 
about N*, if the iteration number k is less than N / 2 ,  then 2 .  k - N < N~ and the iterative 
approach requires fewer multiplications than the direct method in the computation of =-, in 
general. Some values of rnultiplicationa required in the direct computation Cx_ and the iterative 
computation for k = 5 and k = 10 iterations are shown in Table 3, where Ni(k)  is the number 
required by the iterative AFT for k iterations. It can be seen that fewer multiplications are 
required in the iterative AFT. Still further reduction is possible by only computing the solution 
component Px. This will be discussed below. 

Theoretically, an infinite number of iterations is required to achieve the minimum time- 



Iteration numba k 

Figure 3: Squared error norms in iterative AFT 

Table 1: Numbers of direct multiplication coefficients N,, Np and N, required in the computa- 
tions of Mx, Px and Cx, respectively, as functions of N and Nf, the sizes of the time-domain 
and frequency-domain vectors, respectively 

domain error which is zero. However, in the practice of VLSI implementation of this iterative 
algorithm, the accuracy of the computation ia limited by the input A/D conversion process, 
the finite word length of the internal accumulation registers, and the implementation of the 
scaling operations and the PDC operations. Because of this, the minimum time-domain error 
norm cannot be reduced to zero value. Since the convergence rate of this iterative algorithm 
is exponential [21], only several iterations are necessary to reach the minimum error norm and 
to obtain the final result of dense frequency-domain samples. Thus, the results in Table 2 and 
Table 3 show that for realistic ranges of the required number of iterations, the iterative AFT 
requires a smaller number of multiplications. 

The matrix P resulting from the difference of (C - M) provides good transform-domain 
vector & = Px by itself without adding the minimum-norm solution Mx_. In Fig. 4, the 
values of the transform-domain vector X, for the case N = 10 are plotted on top each other 



Table 2: Numbers of multiplications in direct and iterative cornputationa for N = 10 to N = 26 

for individual time-domain signals x[n] = cos(2x.  n . ft). The test frequency f t  takes 100 
different values and these values are equally spaced in the frequency range [O, 0.51. The values 
of the transform-domain vectors & = Px are plotted versus the difference frequency (f-ft) 
and superposed. The matrix filtering operation Px_ thus provides a good set of closely spaced, 
overlapping, narrow-band filters by itself without adding the minimum-norm contribution M&. 
This ia not surprising because the minimum-norm frequency-domain solution 1Mx_ will suppress 
spectral peaks because of its minimum-norm property. For many applications, such aa initial 
spectrum estimation prior to parametric modeling, the initial computation using the P matrix 
alone provides sufficient accuracy. 

Tsarrsforms from P Matrix 

Frequency Di ffercnco (f-fr) 

Figure 4: Superposition of frequency-domain vectors Pg for 100 uniformly spaced values of 
the test hequency 

f t in the Nyquist frequency range [O, 0.51 plotted versus the difference frequency (f - f t )  

The matrix P is also suitable for implementation with the permuted difference coefficient 
structure. The number of multiplications in P can be more effectively reduced than the matrix 
C. As a result, the total number of multiplications in the iterative approach will be less than 
the number of multiplications in the direct implementation of Cx_ when the condition k < N/2 



is satisfied, in general. The decomposition of the computation Cx_ to the computations of Pg 
and M- and the property of A& discussed in Section 4 ah0 allows the parallel computation 
of Px_ and M-, which could provide further time saving from the direct computation of Cx. 

COMPUTATION OF DISCRETE COSINE TRANSFORM. The discrete c e  

sine transform (DCT) is an orthogonal transformation. Its basis vectors are sampled cosine 
functions [28]. The one dimensional DCT and inverse discrete cosine transform (IDCT) of an 
N point real sequence xn are defined by 

for  05 n, k l  N -  1, 

respectively, where 

1 otherwise. 

The basis set of DCT ia a good approximation to the eigenvectors of the class of Toeplitz 
matrices. It has been shown that DCT offers a higher effectiveness than the discrete Fourier 
transform (DFT) and performs very close to the statistically optimal Karhunen-Lohe trans- 
form (KLT) when used for coding signals with Markov-1 statistics [29]. DCT can be expressed 

where x, = 0 for n = N, N + 1, . ., 2N - 1 and Re{. )  represents taking the real part of 
the term enclosed. Therefore, the N point DCT can be computed using 2N point fast Fourier 
transform (FFT). Some other algorithms have also been proposed for the fast computation 
or the simple implementation of DCT [30, 311. In this study, we investigate the use of the 
iterative arithmetic Fourier transform [32] to realize DCT. 

COMPUTATION OF DCT WITH THE AFT. The arithmetic Fourier transform 
(AFT) has been proposed for computation of the DCT by Tufts et al. [7]. Considering the 
continuous function 

N-1 N-1 

~ ( t )  = C ek - ck - cos(*kt) = C ehco(t) 
k=O k=O 

where 
c k ( t )  = ck - coe(xkt) 



we can see that z(t) has period 2 and z, is obtained by sampling z(t) at time t = (n + :)IN 
for n = 0, . *  -, N - 1. If there is no zero-frequency component, namely, co = 0, we get 

and zn is determined by 

Similar to the AFT algorithm, we define a set of delay-line filters 

2N 2 Note that for the DCT the wider sampling interval [o, +&l] is required than the sampling 
interval [o, v] in the AFT. 

Substituting (7) into (9) and rearranging the order of summations, we get 

Since 

for n = 1, -.., N - 1. 

n-1 2m - z co&[rk(t - -)I = { cos(xkt), if k = 1 - n for  some integer I ;  

m=O 
n 0, if ,I 1 k, (51) 

the output of the delay-line filter is 

for  n = 1, - - . ,  N - 1; 
where L(N - l) /n] denotes the largest integer which is less than or equal to (N - l ) /n .  Applying 
the Mijbius inversion formula to (12), we get 

Sampling ck(t) at t = 0, we obtain the formula for the discrete cosine transform using the AFT 

for k =  1 , 2 , - - - , N -  1. 



This computation needs only additions except for a small amount of multiplications by pre- 
scribed scale factors. Also, the high degrees of regularity and parallelism of the AFT make 
it very suitable for VLSI implementation. From (9)) we can see that, for computation of dis- 
crete cosine transform using the AFT, the dense data samples of z(t) at non-equally spaced 
fractions % (n = 1, . , N - 1; m = 0,. - - , n - 1) are required [12]. The sampling range 

2 N-2  is incre-d to [O, u] from the original sampling interval [m, -1 2N and there is also a 
zermmean requirement for the signal x,. 

ITERATIVE COMPUTATION OF THE DCT. The iterative AFT could be used 
to calculate the discrete cosine transform with the same data set x, in (1) and therefore 
overcome the dense, Farey-fraction sampling problem. The previous requirement that x(t) 
has zero mean can also be eliminated. Furthermore, dense frequency-domain samples will be 
obtained. 

Considering first the discrete-time cosine transform (DTCT) defined by 

we can see that except the scaling factors, the DCT can be considered as samples of the DTCT 
with w = +K, k = 0,1, . . a ,  N - 1. The function c(w)  has the period of 41. Similar also to the 
AFT algorithm [I], we define a set of N delay-line filters which have outputs [34] 

with i(&) = c(47r&) for m = 0,1,. . , N - 1. Substituting (55) into (56) and exchanging 
the orders of summations, we get 

Since 

1 2m 1, i f  = = I ,  forsome integerl, C GO$(- 
2m + 1 k=O 0 ,  ot herwise; 

(58 )  

we net 
2n+ 1 

S(2m + 1) = x, for - = integer I .  
n 2 m + 1  

Using the Mobius inversion formula, we obtain the formula for determining the time domain 
signal z, from the outputs S(2m + 1) of delay-line filters 



for n = 0,1,. - , N - 1. There ie no need of multiplications of cosine coefficients. The sampling 
instants of frequency domain samples are the Farey-fraction values of odd-number denominator. 
For example, the sequence of 19 sampling points for N = 5 are 

The total number F of frequency domain samples in the interval [O, 4 ~ 1  corresponding to N 
time domain samples can be estimated as 

That is, much more frequency domain sarnplee are needed for determination of time domain 
samples using the Mobius inversion formula (60). 

The matrices corresponding to operations of the helay-line filters (56) and the Mijbiua 
inversion (60) for N = 5 are 

and 

respectively. The computation of x, from z(&) can be expressed in a matrix form as 



The vectors and x are defined as 

and 

- x z  [x0 2 1  "' z ~ - ~ ]  T 
- 

respectively, where T represents the vector transpose operation. The elements of & are arranged 
according to the increasing order of values (&) for rn = 1, - - - , N - 1; k = 0,. . . ,2m. 
Combining the delay-line filter matrix (62) a d  the Mobius inversion filter matrix (63)) we 
obtain the following matrix A of describing the complete AFT operation for N = 5 as 

When given N uniformly spaced time domain samples z,, n = 0, 1, - - a ,  N - 1, we can 
determine the frequency domain samples t(&) by iterative use of formula (64). We use the 
steepest -descent algorithm for updating the frequency domain samples. The updating formula 
is given by 

b+l = 4 + 2anTgj (68) 

where 2, is the jth approximation to 2 and a is the step size of updating. The error vector 
is defined as 

Ej = - gj (69) 

where x,. denotes the synthesized time domain signal using the AFT filter (64). That is, 

If we start with a zero vector &, = Q and choose the step size a in the range 

where a,,, is the maximum singular value of the matrix A, the process (68) will converge and 
give the minimum norm solution Em of the equation (64) 

- - A ~ ( A A = ) - ~ x  = Mx, Cm - (72) 

where M is the minimum norm solution matrix M = A= (AA=) -~ .  



The frequency domain samples E(&) defined by the cosine transform and the time 
domain samples x, are related by 

with m = 0 , 1 , . . - , N -  1; k = 0 , 1 , - . - , 2 m .  

Writing this in matrix form, we have 

where C is the cosine transform matrix whose nth column (n = 0,1, - - , N - 1) is the cosine 
function coe((n + f )u) sampled at values of w = & for rn = 0,. - , N - 1; k = 0, - - . ,2m. In 
general, the cosine transform matrix C ia not equal to the minimum norm matrix M. We use 
D to represent the difference matrix between the cosine transform matrix C and the minimum 
norm matrix M, namely, 

D = C - M .  (75) 

If we start with the initial vector 

the convergence property of th updating process (28) will not be affected and the process will 
converge to the cosine transform solution (74) 

In this algorithm, the computation of synthesizing the signal zj = Acj can be easily achieved 
by the AFT. Using the permuted difference coefficient (PDC) structure [13], the number of 
multiplications in the computations of and of the initial vector b can be effectively 
reduced. The PDC structure can be implemented with random access memory (RAM) and 
read-only memory (ROM). Therefore, the arithmetic computations of this iterative method 
also has high degree of parallelism and the resulting architecture is regular. As a result of this 
iterative use of the AFT, the problem of dense, non-equally spaced time domain data samples 
has been overcomed. The dense frequency domain samples of cosine transform are obtained 

- without any interpolation or zero-padding. 
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Fig. 5. DCT Spectrum and AFT Spectrums 

As an example of computation of discrete cosine transform using iterative AFT, we calculate 
the spectrum of a signal z, = cos(27r f n) with f = 0.2 and n = 0,1, - - - ,4.  By "spectrumn, 
we mean the values of the elements of a transform domain vector, such as E or i,. The DCT 
spectrum is obtained by direct computation of (73) and is shown in the dashed lines in these 
figures. The spectrums of iterative AFT at different iterations are shown in solid lines. The 
squared error norms are shown in Fig. 6 as functions of iteration number j .  The squared time 
domain error norm is defined by 

The corresponding squared frequency domain error norm is defined by 

where frequency points are at the odd-number denominator Farey fractions -, We can see 

that after several iterations, the iterative AFT quickly reduces the squared error norms and 
the resulting spectrums converge to the DCT spectrum. 



Fig. 6. Squared Error Norms of Iteration Process 
The arithmetic fourier transform has been extended for 2-D applications by Tufts, Fan and 

Cao [7]. Two methods of computing the 2-D discrete cosine transform using AFT have been 
developed [33]. The first method uses the ZD AFT to implement a simple computation of 
the 2-D DCT and dense samples are required. The second method is based on the iterative 
AFT. It overcomes the difficulty of dense, Farey-fraction sampling in the image-domain and 
could be used for caaes in which (a) the function to be analyzed can only be sampled uniformly 
and at a rate close ta the Nyquist rate or (b) dense transform-domain samples are needed. 
The 2-D inverse discrete cosine transform can be very efficiently computed from these dense, 
Farey-fraction transform-domain samples using the 2-D AFT. Therefore, this iterative method 
could be used with the AFT to form a transform and inverse transform pair and to efficiently 
perform the 2-D discrete cosine transfoim and the 2-D inverse discrete cosine transform. 

CONCLUSIONS. An iterative arithmetic Fourier transform method is proposed in 
this paper. This method overcomes the problem of dense time-domain sampling in the orig- 
inal 'AFT and preserves its advantages for VLSI implementation and fast computation. This 
iterative AFT could be used with the AFT [I] in certain applications to reduce computation 
and efficiently perform Fourier analysis. 
The application of the iterative AFT algorithm for the computation of the Discrete Cosine 
Transform is also presented. Further research work on using partial information about the 
phases or modulus of the transform (such as in problems of reconstructing a signal from the 
phases or modulus of its Fourer transform) to improve the convergence could be pursued. 
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ABSTRACT. 

The Hilbert Scheme is a fundamental object of study in Algebraic Geometry, as  
it parametrizes all algebras of the forrn k [ z o ,  . . . , x , ] / I  having certain proper- 
ties in common. In this paper I give a description of such algebras, what prop- 
erties algebras on the same Hilbert Scheme have in common, and some general 
properties of the Hilbert Scheme itself. I also indicate how computers become 
involved in solving these problems for particular algebras and particular Hilbert 
Schemes. 

Throughout, let k be a field of characteristic 0, for example k = C, the complex 

numbers. Consider the polynomial ring k [ x ] .  We can consider this as a homogeneous 

(meaning all monomials in a given polynomial are of the same degree), graded k-algebra, 

graded by degrees. We then write k [ s ]  = $zo kx'. If we let f {t) = climk(k[x])t, then 

f (i) = 1 for all i. f is the Hilbert function of k[s]. For A = k[x, y] = $zO A;, Aj = 

k s i  $ k s i - l  @ . . $ k y i  has dimension i + 1, so f (t) = t + 1 for k[x, y]. In general, for a 

graded k-algebra A, the Hilbert function is defined to be f(t) = dimkAt. 

Let I = {collection of polynomials} whose zero set we would like to study. For in- 

stance, suppose I = (z2 - ry). We can compute f(All)(t), where A / I  = k [ ~ ,  y]/(x2 - xy), 

by noting that x2 - xy = 0. This allows ua to replace xy with x2, cutting down on the 

number of generators in each dimension. Thus Ai = k x i  @ kya for i > 0, and A. = k (as 

always). Hence, 
1 for t = 0 

fWl~)( t )  = { *  eh 

as well. 

Note that in the case of k[x], f ( t )  = 1 is a polynomial, as is f ( t )  = .t + 1 for k [s, Y]. 

In the last two cases, f ( t )  can be expressed as the polynomial f (t) = 2 for t > 0. In fact, 

* Partly supported by the 17. S. Army Research Office through A CSyAM, MSI of Cornell 

University. 



* the Hilbert function is always expressible as a polynomial p(t) for large enough t. The 

polynomial p( t )  is called the Hilbert polynomial. 

For those familiar with projective geometry, E[x] corresponds to projective 0-space, 

k[s ,  y] corresponds to the projective line, and k[s ,  y]/(x2 - xy) and k[x, y]/(z2) corre- 

spond to two points on the projective line. For these examples, this information is easily 

obtained from the given algebras, but for more complicated examples, the only method 

available to determine the dimension and degree of the zeros of a collection of polyno- 

mials is to compute the Hilbert polynomial, and then read off this information from the 

leading term of the polynomial. Fortunately, the Hilbert polynomial can be computed on 

a computer using, say, the program Mncaulay. 

Note: Two algebras having the same Hilbert polynomial define zero sets whose dimen- 

sions and degrees are the same. 

Question: Can we classify all algebras A/I  (where A = k[xo,. . . , x,]) having the 

same Hilbert polynomial? 

The answer is yes, and there are, in fact, a variety of ways to do so, one of which is 

by means of the Hilbert scheme ~ilbg:) (see [I]) , where p(r) is the Hilbert polynomial 

and Pn corresponds to k [ x o , .  . . , x,]. Each point of the Hilbert scheme corresponds to a 

particular algebra A / I  with Hilbert polynomial p(z), and A = k[xo, . . . , x,]. 

For p(r) = ("T') (for example, for k [XI, n = 0 and p ( z )  = 1, and for k [ x ,  y], 

n =, 1, and p ( z )  = z + 1)) the Hilbert scheme ~ i l b $ )  is a single point. Letting n = 1 

and p(r) = 2, we saw above that k[xo, xl]/(x% - xOxl) and k[xo, x l ] / (x~)  are two al- 

gebras having p ( ~ )  = 2. These correspond to the two pts. { ( x o  - Oxl ), (xo - X I  )) 

and {(xo - Ox1), (so - Oxl)) respectively. If we look at all possible sets of two points 

{(xo - azl), (so - bxl)} for all possible a, b, we see that each set of two points can be 

described by the two values a and b. Letting a and/or b take on the value of infinity, we 

see that the possible sets of two points are parametrized by P a ,  the projective plane. In 

fact, for n points in P1, Hilbg, 2 Pn. In general, however, the scheme will be far more 

complicated. In particular, it may not consist of just a single component. 

The problem of determining exactly what the Hilbert scheme looks like for general 

projective n-space, and general Hilbert polynomials is quite difficult in practice, More 

tractable are problems involving the determination of certain of its characteristics. For 

example, 

Problem: Determine the component structure of the Hilbert scheme, that is, the 

number of i~reducable components, their dimensions, their intersections and, if possible, a 

general description of the types of algebras (zero sets) on each one. 



For the Hilbert scheme ~ i l b : : ~  corresponding to certain curves of degree three in 

projective 3-space, we can get a good idea of the algebras (curves) it parametrizes by 

noting: 

1) It has two components, one of dimension 12, one of dimension 15. 

2) These components intersect and their intersection is of dimension 11. 

3) After a change of coordinates, each point on the component of dimension 12 corre- 

sponds to a twisted cubic curve, i.e. parametrically, the image of the map t I+ ( t ,  t2, t 3 ) .  

4) Similarly we can describe the points on the component of dimension 15 as being plane 

curves of degree 3 with a point in P3. 

Although it is generally believed that anything bad that can occur on a scheme will 

occur on some Hilbert scheme, the following facts hold for all Hilbert schemes: 

1) Every Hilbert scheme is a closed subspace of a Grassmanian. 

2) Every Hilbert scheme is connected. 

3) No Hilbert scheme "sprawls" too much, i.e, the maximum "distance" (rnea- 

s u e d  in components) between two components is directly related to the dimen- 

sion of the sets of zeros being parametrized. 

This last fact was discovered computationally with the help of the program Macaulay, 

and it is one of the main results in my dissertation. Though its truth was ascertained by 

examples, it is a purely theoretical result and has a purely theoretical proof. Likewise, 

Macaulay, a computer algebra system for algebraic geometry written by Dave Bayer 

and Mike S tillman, employs Grijbner basis theory to compute many of the structures 

found in Algebraic Geometry and Computational Algebra. This fascinating interplay 

between theory and computation, made possible by GrGbner basis theory and programs 

like Macaulay, has revitalized the field of Computational Algebraic Geometry, and is cer- 

tain to be a rich source of examples and results for many years to come. 
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ABSTRACT. Suppose the field of fractions of a polynomial ring modulo a 
prime ideal contains an element c and a finitely generated subfield K. Groebner basis 
techniques are presented which determine if c is algebraic or transcendental over K. If c 
is algebraic over K, a minimal polynomial for c over K is found The minimal 
polynomial tells whether c lies in K. What makes everything work is the reduction to 
questions about finitely generated algebras and the use of Buchberger theory with tag 
variables. 

INTRODUCTION. Frequently, fields arise as fields of fractions of integral 
domain quotients of polynomial rings. Suppose the polynomial ring is k[X l,...,Xn] , 
sometimes denoted kB] . k is a field. Let I = dl, ..., f,> be a prime ideal in k[X] and 
let L be the quotient ring k[XyI. We shall indicate "field of fractions" of an integral 
domain by putting parentheses around the integral domain. E.g. (L) denotes the field of 
fractions of L. Elements of (L) can be written as fractions where b is non-zero. 
Here a,b E k[X] and we underline to indicate the image of "a" and "b" in k[Xv . kt. B 
be a subalgebra of (L) which is generated by cl/cll ,...,cS/gs where the l/$'s are non- 
zero. Consider the questions: 

1. Is a& algebraic over (B)? 
2. If so, find a minimal polynomial for fi- over (B)? 

3. Is (L) an algebraic extension of (B)? 
4. If so, find the index: [ (L) , (B) ] ? 
5. If not, find the transcendence degree of (L) over (B) . 

The bare-bones algorithms for solving these problems are presented. The answers to 
questions three through five are not simply iterations of the techniques used to answer 
questions one and two. In particular, only one Groebner basis calculation is needed to 
answer questions three through five. Further explanation and verification that the 
algorithms are correct will appear elsewhere. 

CREDITS. The results described herein are a natural outgrowth and 
extension of [Shannon87]. Tag variables play a role here which builds on their role in 
[Shannon871 and [Shannon881 and is complimentary to the seminal role of tag variables 
in [Spear77]. This paper deals, in part, with transcendence degree which is related to 
dimension. See wedel881 for other work on dimension using Buchberger theory. 
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ALGORITHM I. Introduce additional variables: Y, Z1 ,..., 2, , SsT1 ,..., T, 
and form the polynomial ring: k[Xl ,..., Xn,Y,Zl ,... ,ZS,S,T1 ,..., Ts] , which may be 
abbreviated: k[X,Y,Z,S,T] . Choose any term order on k[X,Y,Z,S,T] with the 
properties: 

* Each Xi , Y and Zi is greater than any monomial in k[S,T] . 
* S is greater than any monomial in k[T] . 

S and the Ti's are tag variables because they tag their image under the ring map: 
IC : k[X,Y,Z,S,T] -> (L) determined by: 

Xi , Y -> I&, - 1 S -> &, Ti -> gif& 
Alternatively x is &scribed by: 

h(X,Y,Z,S,T) -> hEl,---,Xn,l&,ll& l,...,l / d s , & , ~ l / d l , - - . , ~ ~ ~ )  
With respect to the term order, find a Groebner basis G for Ker A . This may be done by 
the Buchberger algorithm starting with the generating set for Ker x : 

(fi)u{bY-l)v{$Zi-l)v{a-bS)u(ci-diTi) 
Let GT denote G n k[T] . Let GS denote the subset of G n k[S,Tl consisting of 
polynomials whose lead tern is not divisible by the lead tern of a polynomial in GT . 
The f m t  two questions can now be answered. 
0- is transcendental (B) if and only if GS is empty. If GS is not empty, 
choose h(S,T) in GS of minimal S degree. h ( S , l / , . . . , )  consikred 
as a polynomial in (B)[S] is a minimal polynomial for 0- over (13). 
Hence, the S degree of h equals the index: [ (B)WJ , (B) ] . 

We go into no details beyond the following. Since (L) is generated as afield by rhe 
X-'s , the images of the tag variables, & and the ~i/cli's, can be expressed as rational -1 
functions in the xi's. Additional main variables Y and the Zi's and their images have 
been selected so that the images of the tag variables can be expressed as polynomials - 
not just rational functions - in the images of the main variables. 

ALGORITHM 11. Introduce additional variables: Xn+l ,...,Xn+, , TI ,.--,T, 
and form the polynomial ring: k[X1 ,..., Xn,Xn+l ,... ,Xn+s,T1 ,..., Ts] , which may be 
abbreviated: k[X,T] . Choose any term order on k[X,T] with the property: 

* Each Xi is w a t e r  than any monomialin k[Xi+l,...,Xn+s,T]. 
The Ti's are tag variables because they tag their image under the ring map: 
x : k[X,T] -> (L) , determined by: Xi -> xi , Xn+i -> I/$ , Ti -> si/di . Alternatively r 
is described by: h(X,T) -3 h a l  ,... X,, l/dl ,..., l l ~ l ~ , ~ ~ / ~ ~  ,-..,cs/&) . With respect to the 
tern order, find a Groebner basis G for Ker x . This may be done by the Buchberger 
algorithm starting with the following generating set for Ker a : 
{ fi ) u ( diXn+i - 1 ) u ( ci - diTi ) . Let On+, denote the subset of G n kpn+s,T] 
consisting of polynomials whose lead term is not divisible by the lead term of 
polynomials in G n k[T] . Similarly, for 1 S i c n + s , let Gi &note the subset of 
G n k[Xi,...,Xn+s,T] consisting of polynomials whose lead term is not divisible by the 



lead term of polynomials in G n k[2$+l ,..., Xn+s,'lJ . For i = 1 ,... p + s f Gi is not 
empty, choose hi-, ..., Xn+,,T) in Gi of minimal Xi degree. Let Ei be this minimal Xi 
degree of hi . The Xi's play pivotal main variable 1 tag variable roles. Xi is a main 
variable with respect to G- with i < j and Xi is a tag variable with respect m Om with J 1 
j L i . Questions three through five cknow be answered. 

If all the Gi's are non-empty then Q is algebraic over (B). In this case the 
index: [ (L) , (B) ] equals the product of the Ei's. If not, (L) is 
transcendental over (B) of transcendence degree equal to the number of 
empty Gi's . 
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ABSTRACT. This paper is concerned with stable points of 
iterates of the function F(z,d) = d - z2. The number of these 
stable points bifurcates successively as the real parameter d 
varies from -114 to 2. The number of stable points of a particu- 
lar bifurcation is termed the period. Period one stable points 
are roots of the polynomial that result from substituting z for 
F ( z , d )  in the above. Two applications of F(z,d) produce a fourth 
order polynomial. Period two stable points are roots of this 
polynomial that are easily obtained. Four applications of F(z,d) 
produce a sixteenth order polynomial. Period four stable points 
are the roots of this polynomial. Four of these roots are known 
from analysis of the lower iterates. Solution of a twelfth order 
polynomial then determines the period four stable points. A 
general analytic solution method to recursion polynomials of this 
type has been given previously. This paper presents an alternate 
method for obtaining the analytical closed form expressions for 
the period four roots as a function of the parameter d. 

INTRODUCTION. Transition from order to disorder, similar to 
the transition of a fluid from laminar to turbulent flow, has 
been observed in mathematical expressions such as one-dimensional 
maps, an example being the recursion expression 

The parameter d in the mathematical process corresponds to the 
Reynolds number in the fluid flow process. Corresponding to the 
random-like samples of the local velocity in the flow are the 
iterates z, of the mathematical process. Stable points are 
repeating numbers in the sequence 2,. The condition where each 
point is the same stable point is analyzed by substitution of z, 
for z ~ + ~  on the left hand side of equation (1) and solving for the 
roots of the resulting polynomial. Bifurcation occurs here in 
the sense that for larger values of d the stable points repeat 
every second iteration. This sequence of two is termed a period 
two limit cycle. The former case is termed a period one limit 
cycle. 

In this paper, attention will be limited to periods one, two, and 
four limit cycles. However, bifurcation continues to happen as d 
increases. The values where bifurcation occurs (called thresh- 
olds) become closer and closer together. If d is made suffi- 
ciently close to some ultimate value, called the accumulation 
point, an arbitrary high number of stable points make up the . 
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limit cycle (Feigenbaurn, 1978). Stable points occur in isolated 
intervals when d is greater than the accumulation point (Bergel, 
1984, p 202). Between these isolated intervals are intervals of 
chaos similar to fully developed turbulence. That is, the itera- 
tion sequence never repeats itself and the values depend upon the 
starting point. A noise like iterate sequence from equation (1) 
in the chaotic regime is shown in figure 1. This similarity 
between iterate sequences and random processes is the reason for 
the intense interest in the mathematics of one-dimensional maps 
and limit cycles. Understanding limit cycles can perhaps be 
translated into an understanding of the transition of physical 
systems from order to chaos. 

MULTIPLE ITERATES 

0 32 64 96 128 160 192 224 256 
l terate Number 

Figure 1. Iterates of the quadratic recursion relation. 

Feigenbaum (1983) found that high period limit cycles have two 
associated universal numbers. Universal means that these numbers 
do not depend upon the details of the recursion function used, 
which means that investigation of the two universal numbers can 
be effected using any member, such as equation (I), of the 
allowed class of functions if the investigation is carried Ear 
enough. Being quadratic -(second degree) in the iteration vari- 
able z ,  the phenomenon is referred to as quadratic bifurcation. 
Stable points and thresholds determined for one quadratic 
recursion function may be used directly to determine those for 
another quadratic recursion function by the use of a linear 
transformation. 



The present state of quadratic bifurcation is covered in the 
literature (Guckenheimer, 1979). Abel (1829) has given a method 
by which solutions of polynomials of this type can be reduced to 
the solution of polynomials whose order is the same as the 
period. Netto (1898) has shown how the method of Lagrang.e 
resolvants can be used to solve for period three and period four 
roots. 

The new results reported here are an alternate method for obtain- 
ing the roots of a period four quadratic recursion polynomial. 
This method is simpler but, of course, not general as are the 
methods of Abel (1829) and Netto (1898). Much of the algebra 
necessary to show the results presented here has been left out. 

The notation to be used is described below. The symbol N has 
been adopted from previous work (Feigenbaum, 1978, p 50) and 
given the name bifurcation index. It will be employed as an 
identifying label for polynomials, stable points, and thresholds. 
The symbol n is used for the period of a particular bifurcation. 
The period-index relationship is 

In this paper N = 0, 1, 2 is the range of indices considered. 
The following list contains the essential elements of the remain- 
ing notation used. 

P ( z , N )  = stable point polynomial for the Nth bifurcation 

H ( z , N )  = factor of P(z,N-) [P(z,N) = P(z,N - 1 ) H ( z , N ) ]  

Z(d,N,m) = mth (m = 1, 2, ... 2") stable point of the Nth 
bifurcation 

Q(g) = a polynomial in the variable g 

D ( N )  = threshold of d where the period changes from 
2N-1 to 2N 

EXPRESSIONS ASSOCIATED WITH THE LOWER PERIODS. In this 
section, the expressions for the polynomials, stable points, and 
the thresholds of the lower indices will be developed. The first 
step is to write out the corresponding stable point polynomials. 

For a beginning value of the variable, z, ,  and a given parameter, 
a series of iterates z, is produced by repeated application of 



equation (1). If d is greater than D(O), z, approaches a fixed 
point Z(d,O,m) as k increases. This stability occurs when z,,, is 
equal to z, in equation (1). The values of z that satisfy this 
condition are the roots of the index zero poiynomial 

where the serial number k has been dropped for writing economy. 
The index 1 polynomial is obtained by developing the expression 
for the iterate 2 later in the sequence. Hence, 

From equations (3) and (4) , one has 

Equations (5) and (6) serve to define H(z, 1) , which is termed 
here the index 1 primitive polynomial. The index 2 polynomial is 
obtained in a similar manner by developing the expression for the 
iterate four later in the sequence. Hence, 

From equations (4) and (7) , 

Equations (8) and (9) serve to define H ( z , 2 ) ,  the index 2 primi- 
tive polynomial, and show that P(z,l) is a factor of P(z12). 

Roots of polynomial P(z,O) of equation (3) are given by 

Z(d,O,l) = 1/2[-1 + (1 + 4d)'l2]; (10) 



and 

Z(d,O,l) is a stable fixed point and Z(d,0,2) is an unstable 
fixed point (Feigenbaum, 1983)). From equation (6) one sees that 
two roots of the index 1 polynomial P ( z , l )  are the same as the 
roots of P ( z , O ) .  The remaining index 1 roots are obtained by 
applying the quadratic formula to H ( z , l )  from equation (5). 
These roots are 

The threshold can now be determined. For equations (10) and (11) 
to be real, the radical must be nonnegative. This condition on d 
defines the index zero threshold. 

The value of d at which equations (12) and (13) become real is 
the index 1 threshold 

The index 2 threshold is 

The condition that a radical in the index 2 stable point expres- 
sions of the following section be real gives this result. 

INDEX 2 RESULTS. In this section the expressions for the 
roots of the index 2 primitive polynomial H ( z , 2 )  will be devel- 
oped. It is shown in its expanded form in equation (16a). 



Figure 2 shows the variation of H ( z , 2 )  as a function of z. The 
first clue to how the roots of H(z,2) are constructed came from 
following the graph of the polynomial as the parameter is 
increased. A recent paper (Godwin, 1984) examines this point in 
detail. Suppose the value of the polynomial is greater than zero 
for all z of interest when d is less than D ( 2 ) .  As d is 
increased past D ( 2 ) ,  the minima of the period four polynomial 
approach the zero line, touch this line at the points correspond- 
ing to the stable points of the period two polynomial, and then 
proceed downward so that the graph now crosses zero on either 
side of the period two stable points. This behavior is illus- 
trated in figure 3. Just after the threshold has been reached, 
the two new roots are very near each other and are approximately 
equidistant from the period two stable points. 

PERIOD FOUR PRIMITIVE POLYNOMIAL 

Figure 2 .  Period Four Polynomial showing the four stable points. 



POLYNOMIAL RELATIONSHIPS 

Figure 3 .  Period two and period four relationship 
at period four threshold. 

The second clue came from observation of the numerical roots of 
P ( z , 2 ) .  Looking only at the real roots (for d = 1.5) and identi- 
fying them as follows 

one observes that 

(R1 + R3)(R2 + R4) = -1.00000083. 

A similar result occurred for the other root sets. This similar- 
ity suggests that R1 and R3 are related to each other in some way 



and that R2 and R 4  are related to each other in some way. It 
also suggests that the two sums are negative reciprocals. 
Combining the two clues suggested representing the first root set 
in general by the following 

Z ( d , 2 , 5 )  = +G + H; (22) 

where G ,  H, I, J are essentially another variable set. Applying 
equation (1) to the right hand sides of equations (22) through 
(25) results in 

combining appropriately, one finds that  

This shows that the result suggested numerically in equation (21) 
is in fact true. Combining another way and substituting G = g/2, 
one finds 

It is found numerically that +2G and -21 satisfy Q(g). Noting 
that Q(g) will contain like information for root sets Z ( d , 2 , 9 )  
through Z(d,2,12) and for root sets Z(d,2,13) through Z ( d , , 2 , 1 6 ) ,  
the following hypothesis is advanced 



In the above, G,, I, belong to the first set; G,, I, belong to the 
second set; and G3,13 belong to the third set. Combining monomi- 
als by twos and using equation (30) result in 

Carrying out the multiplication, comparing coefficients with 
equation (31), eliminating K2, K,, and letting K, = K = I - G, 
the result is 

The solution for equation (35) is known (Abramowitz and Stegun, 
1970). The real root is 

Only this real root will be written out. Substituting from 
equation (30) for I in equation (34) , we obtain 

The positive radical was used so that evaluation of equation 
(39) yields the values in equations (17) through (20) . Using 
equations (34) and (26) through (29), one finds 



where the positive radical is to be used. The full expression 
for the roots may now be obtained from equations (22) through 
(25). The first one of these is 

K is given by equation (36) and S1 and S2 are given by equations 
(37) and (38). Roots Z(d,2,6) through Z(d,2,8) are generated by 
appropriately combining G, HI I, J from equations (39), (40), 
(41) , and (42) according to equations (23) through (25) . Roots 
Z(d,2,9) through Z(d12,16) are obtained from K,, K, in a like 
fashion where K, is the second root of equation (35) and K, is 
the third root of equation (35) (Abramowitz and Stegun, 1970) . 
We are now able to show how the index 2 threshold may be obtained 
from a condition on the index 2 stable point expressions. The 
condition will relate to some radical passing from imaginary 
through zero to real as d passes through D ( 2 ) .  Searching the 
expressions for the relevant radical, we find the expressions for 
HI J are the proper ones. From equations (41) and (42) we write 
the conditions for HI J to be zero simultaneously 

Subtracting equation (45) from equation (44) and factoring, we 
get 

(G + I)[1 - ( G  - I)] = 0. ( 4 6 )  

For the bracket to be zero, (G - I) must be unity, giving the 
condition on d in equation (16). 



CONCLUDING REMARKS. The author is indebted to Dr. D. M. 
Giarrusso, then a member of the Mathematical Sciences Institute 
at Cornell, now at Saint Lawrence University, for the location of 
the early work (Abel, 1829, and Netto, 1898). The solution 
method reported in this paper is independent of Lagrange, but of 
course gives the same expressions for the roots. Attempts to 
apply the present method to the index 3. polynomial have resulted 
in some simplification but have not produced root expressions. 



REFERENCES 

Abel, N. H., 1829, llMimoire sur une Classe Particuliere 
~'gquations RQsolubles AlgBbriquement,** Journal fur die 
Reine and Anffewendte Mathematik, Crelle, Berlin. 

Abramowitz, M., and I. A. Stegun, ed., 1970, Handbook of 
Mathematical Functions, National Bureau of Standards AMS 55, 
U. S. Government Printing Office, Washington, D. C. 

Berge*, P., Yves Pomeau, and C. Vidal, 1984, Order within 
Chaos, John Wiley and Sons, New York. 

Feigenbaum, M. J., 1978, "~uantitative Universality for a Class 
of Nonlinear TransformationstW J. Stat. Phv., 19:25-52. 

Feigenbaum, M. J., 1983, "Universal Behavior in Nonlinear 
Systems,*@ Nonlinear Dynamics and Turbulence, eds. G.I. 
Barenblatt,, G .  Iooss, and D. D. Joseph, Pitman Advanced 
Publishing Program, Boston, London, and Melbourne. 

Godwin, A. N., 1984, "The precise determination of Maxwell sets 
for cuspoid catastrophes," Int. J. Math. Educ. Sci., 
Technol., 15:167. 

Guckenheimer, J., 1979, "The Bifurcation of Quadratic Functions," 
Bifurcation Theory and Applications in Scientific Disci- 
plines. Annals of the New York Academv of Sciences, vol 316, 
eds. 0. Gurel and 0. E. Rossler, New York Academy of 
sciences, New York. 

Netto, Eugen, 1898, Verlesunsen uber Alaebren, Teubner, Leipzig. 



Beyond Rolle's Theorem 
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Abstract 

The concept and existence of higher-order Rolle's theorems are in- 
troduced, and a summary of results for polynomials of degree up to 5 
follows. The general topic at  hand is what kinds of restrictio~~s there 
are on the placement of roots of various derivatives. The surprising 
result is that Rolle's theorem is not the only such restriction. 

Introduction. Much recent work has been co~lcerned with the signs 
of polynomials and their derivatives. For example, Ben-Or-Kozen-Reif [l] 
construct an algorithm for counting the number of real zeros of a polynomial 
with a prescribed sign sequence corresponding to  the signs of the derivatives 
of ascending order. Caste-Roy and Sweedler [2] have also pointed to a way 
to determine, based on the sign sequence of the polynomiaki a t  two different 
points, which point lies to the right of the other. Their algorithm rests 
on Rolle's theorem, and gives a method for determining whether a list of 
sign sequences is consistent - i.e. whether it is a t  all possible for a single 
polynomial to generate this list of sign sequences. 

My work centers on something of a stronger question: Is being consistent, 
in the way defined by Coste-Roy and Sweedler, the only such restriction on 
polynomials, and on differentiable functions in general? 

Rolle's Theorem. I will phrase this question in a different wag: Given 
the relative position of the zeros of a polynomial and the zeros of successive 
derivatives, is it possible to find a polynomial which has these zeros and no 
others? 

For example, is it possible to find a polynomial (or even a rea,l differen- 
tiable function), with three real roots a < b < c, and whose derivative has 
exactly two real roots between a and b, and none between b and c'? (See 
figure 1) 



Figure 1 

The answer is obviously no, for this would violate the well-known Rolle's 
th~arem, which states that between any two real roots of a differentiable 
function, its derivative must have a root somewhere in the interval of the 
original two real roots. (Fig. 2) 

r oo t s  o f  f 0 
=> root of f' 

Figure 2 

We can iterate Rolle's theorem, so that given a sufficiently differentiable 
function with, say, 5 real roots, its derivative must have a t  least 4 real roots, 
one inside each of the 4 intervals defined by the original 5 roots. Likewise, 
the second derivative must have 3 roots, the third derivative must have 2 
roots, the fourth derivative must have a t  least 1 root, and the fifth derivative 
is not guaranteed to have any roots as a result of simply iterating Rolle's 
theorem. (See figure 3). 

keros of f :  0 0 0 0 0 
=> zeros of f' 0 0 0 0 
=> zeros of f"  0 0 0 
=> zeros of f 0 0 
=> zeros of f 0 

Figure 3 

The algorithm of Sweedler and Coste-Roy provides a nice way to deter- 
mine whether the iterated Rolle's theorem has been violated. However, so 
long as the iterated Rolle's theorem is satisfied, this method won't poillt 
to any inconsistencies. I initially began my research under the belief that 
iterated Ralle's theorem was the only such restriction on differentiable func- 
tions, thinking that if there were others, they would be known by now. 
Nevertheless, it has emerged that there are other restrictions, in fact quite 
a few (possibly infinite). I have not yet been able to determine one global 
restriction or a general pattern of iestrictions yet. These restrictions which 
do not follow from iterated Rolle's theorem may be considered a higher order 



Rolle's theorem, because the placement of the roots of various derivatives of 
f relative to one another guarantees a root of a derivative whose existence 
is not already guaranteed by iterated Rolle's theorem. The simplest such 
higher-order Rolle's Theorem I have found is described below. 

A Higher Order Rolle's Theorem. Let f be a real function which 
(on an open interval) is differentiable five times, and has a t  least five roots. 
Suppose the first two roots off" lie to the left of the second and third roots 
of f, respectively. Suppose the first root of f (3) lies to the right of the second 
root of f'. Then f ( 5 )  must have a root in the open interval between the first 
and fifth root of f .  

The hypothesis of the theorem is illustrated in figure 4. 
" a  

s ign  of f :  O+++ 

o+++++++++++ 
.................... 

sign of f :----------------------------O+++++++++++++++++++++++++++++ 
sign ei i ('I: .......................................................... 

Figure 4 

In particular, cl < a l ,  b < d , and c2 < a2 In our higher order Rolle's 
Theorem, we are guaranteed a root off  ( 5 )  somewhere in the interval (al ,  cz). 

The proof of the theorem above is b a e d  on Taylor's remainder formula. 
One expands f (d + c) and f (d - 6 )  about d. A bit of symbol pushing leads 
to  the conclusion that d lies closer to a2 than al. Ln a similar manner, 
expanding f(2)(d + c) and f(2)(d - 6 )  will lead us to conclude that d Lies 
closer to cl than cz. One can check that d can not both lie closer t o  cl than 
cz and closer to a2 than a1 while insisting that 

as originally assumed. This implies the existence of a zero of f ( 5 ) .  

The discovery of this theorem sprang out of a systematic investigation 
of the special case of polynomials (as opposed to general differentiable fnnc- 
tions). Polynomials are much easier to handle, and discovering a restriction 
on where a polynomials's roots may lie often leads to a general higher order 
Rolles theorem- such as the one described above. Therefore the rest of our 
discussion will relate only to polynomials, keeping in rniild their importance 
in generalizing to general differentiable functions. 



The Case of Polynomials. Given a polynomial of degree n with n 
real roots, iterated Rolle's theorem will guarantee that all the roots of all 
the derivatives will be real, and will specify certain intervals in which they 
must fall. Again, what other restrictions are there which can not be deduced 
from Rolle's theorem? 

I have been able to characterize all such restrictions on polynomials of 
degree 2,3,4, and 5. I will go through the cases of degree 2,3, and 4 in some 
detail, but only summarize the results for degree 5. 

Degree 2. The degree 2 case is quite simple. Given a second degree 
polynomial with two real roots a and b, by Rolle'~ theorem its fist derivative 
will of course have a root between a and b. (In fact it will lie exactly half way 
between a and b.) p ( x )  = (z - 1)(x + 1) is an example of such a polynomial, 
so all possibilities satisfying Rolle's theorem (in this case there is only one 
possibility) are constructable. (See Fig. 5) 

Figure 5 

Degree 3. For the degree 3 case there are two possibile arrangements of 
roots which satisfy Rolle's theorem. Given a cubic polynomial with three 
real roots a, b, and c, its derivative must have two real roots, one between a 
and by the other between b and c. Now the second derivative must have one 
real root, but it may lie to the left or to the right of b, hence the conclusion 



that there are two possibilities. And in fact. these two possibilities are 
constructable, as indicated in figure 6. 

Figure 6 

Degree 4. In the fourth degree case, things begin to gee somewhat com- 
plicated. There turn out to be twelve possible arrangements of the roots 
which satisfy Rolle's theorem. They are listed in table 1. 

Table 1 



Here the notation "0102132010'' means "first the polynomial has a zero, then 
the first derivative, then the polynomjal, then the second derivative, then 
the first derivative, etc." Note that between every pair of 0's there is a 1, 
between every pair of 1's there is a 2, etc. This is simply due to the iterated 
Rolle's theorem. However, o'nly ten of these twelve possible arrangements 
are actually constructable; in other words, two arrangements of the roots 
which satisfy Rolle's theorem can not actually occur in reality. To illustrate 
why these two arrangements are not achieved, it is helpful to construct 
the following graph. * By "modding out" affine transformations of the 
polynomial (affine transformations will not affect the relative arrangement 
of roots), we can begin by assuming that the first and last roots are given 
by -1 and 1, respectively, so that in order to completely determine the 
polynomial (up to affine transformations) we need only specify the inner 
two roots, a and b. Here a and b vary between -1 and 1 and a < b. For 
each particular choice for a and b we can numerically determine which of 
the twelve "legaln arranglnents is achieved. By doing this a t  every possible 
choice of a and b (at least within some numerical approximation) we can 
then construct the "mapn, which is shown in figure 7. 

Figure 7 
'The idea for this graph was suggested by Carl de Boor at the University of Wisconsin, 

Madison. \ 



Yote that only ten regions show up an the map. These are the constructable 
cases. The root arrangements which are missing are "0120132010" and 
"0102310210'. Yote that one is just the reverse of the other. The curves 
which separate one region from the others correspond to values of a and b 
where two roots "line up", so that on one side of the curve one of the roots 
is always to the left of the other, while on the other side of the curve the 
reverse is true. Figure 8 shows on what side of the curves one would have 
to be in order for "0120132010" to be constructable. 

Figure 8 

Clearly. there are no points on the correct side of all- three curves. and this 
illustrates ivhy it is not constructable. It was the non-constructability of 
these two arrangements of the roots that led me to the simplest higher- - 

order Rolle's theorem described above. 

13egree 5. Xot surprisingly, the complexity of the situation increases 
rapidly as we increase the degree. In the fifth degree case, there are 286 
possible arrangements of the roots satisfying Rolle's theorem. However. 
only 116 of them can actually be realized. Thus, 170 are not constructable. 
To prove that an arrangement can be realized, one needs to merely construct 
a polynomial which generates the correct sequence of roots. To prove that 
a poIynomial is not realizable, however, is somewhat more difficult. For 
the fifth degree case, one can isolate six "sules" which completely explain 
all the unconstructable polynomials of fifth degree, and a proof of these sis 
rules has been found. Some of them easily extend to a higher-order Rolle's 
theorem as in the fourth degree case, while others lead to  no obvious such 
extension. 
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Abstract. We consider several methods for solving the linear equations arising from finite 

difference discretizations of the Stokes equations. The two best methods, one presented 

here for the first time, apparently, and a second, presented by Bramble and Pasciak, are 

shown to have computational effort that grows slowly with the number of grid points. 

The methods work with second-order accurate discretizations. Computational results are 

shown for both the Stokes and inco~npressible Navier-Stokes at low Reynolds number. 

I. Introduction. 

The steady-state Stokes equations in I l d  are 

In almost all applications the function g in the second equation of (1.1) is zero, but the 

methods discussed here do not require that y be zero, so we include this slightly more 

general case. We consider only the the Dirichlet boundary condition 

The methods discussed bere should be easy to extend to other boundary conditions. The 

velocit,y u' is a vector of dinlension d and the pressure p is a scalar. The domain of our 

" The work of this author was supported by the U.S. Army Research Office under 

gal-its DArlL03-87-K-0028 and DA-4L03-91-G-0094. 



computational examples is the unit square in R2. In current research we are using these 

methods on more general domains. For a discussion of the mathematical theory related to 

the Stokes equations see the book by Telnam [16]. 

Let Ah, GIL and Dh be the matrices generated by discretizations of the differential 

operators (-V2),  and (-a+) respectively. The discretization of (1.1) may be written as 

In some formulations of the difference equations, e.g., staggered grids and finite element 

formulations, the matrix Dh is the transpose of G h ,  i-e., Dh = G:. However, in many 

cases this is not true, either because of boundary conditions or because of the difference 

schemes. In this paper we do not assume that Dh = GT. Note that 

where 

Q~ = D ~ A L ~ G ~ .  

Hence (1.2) is solvable if Ah and Ql, are invertible. 

The methods we discuss here ase based on the operator Qh.  We note that 

from the first row in (1.2). Using the second row, we have 

Thus (, 1.2) can be solved by first solving 

for ph where 
-1 - 

111~ = DhAlr, j h  - gh..  

Afte,r ph is obtained, (uh can be recovered from (1.3).  The operator Qh is the Schur 

complement of the system (1 2) .  

The operator Q h  often has several rather desirable properties. As we show in the 

next section, Qr, is close to being a symmetric, positive definite operator. Moreover, in 



many cases the eigenvalues of Q h  can be bounded independently bf the mesh spacing. In 

these cases, one can use the conjugate gradient method to solve (1.4), and the number of 

conjugate gradient iterations required to solve (1.4) should be relatively independent of 

the grid parameters. We call the iterative method based on solving (1.4) by the conjugate 

gradient method the pressure equation method, and refer to it as the PE method. 

The PE method requires that .-Ih needs to be inverted in each iteration of the conjugate 

gradient method. This must be done efficiently in order for tihe overall method to be 

efficient. Multigrid methods or preconditioned conjugate gradient methods are two possible 

methods. The price for inversion of a i l h  would be essentially independent of the grid size 

tvhen the multigrid method is used, and would grow slowly if a preconditioned conjugate 

gradient method were used. 

The Gzawa iterative method, see [I], can be viewed as solving equation (1.4) by a 

fised point iteration. This method can be written as, 

The method converges for y in some interval (O,?) depending on the scaling of the opera- 

tors, 

-4 potential disadvantage of these methods is the necessity of inverting Ah at each 

iteration. There have been a number of iterative methods that avoid the inversion of the 

operator -41, as required by the Uzawa method. We describe clnly a few here. For other 

related methods see [8], and [I]. 

Bramble and Pasciak [3] proposecl an iterative method using a preconditioned con- 

juga,te gradient method to solve finite element approximations to the Stolces equations. 

To avoid the inversion of =ilk ,  Brarnl~le and Pasciali used a preconditioner A;. With the 

preconditioner, ( 1 .'3) is transformed to 

A; A~ A;;;G~ 
illh = and fh = 

DhAci(Ah - Ah*) D~A;& 

Tlze!; a.ssumed that G i  = Dh a8nd 



for all u h  # 0 and for some a with 0 < a < 1. If (1.7) is satisfied, then Mh is symmetric 

and positive definite with the inner product 

where ( a , . )  is the usual inner product in the discrete space. 

Under an assumptioll equivalent to the inf-sup condition (see [2]) which implies that 

the condition number 6(&Ih ) of Q h  is bounded by a constant independent of h, they showed 

that 

for some positive constants C1 and Cz and for all ( ~ u ~ , p ~ ) ~ .  This implies that ~ ( n / ! h )  is 

bounded by a constant independent of h and the conjugate gradient is a good method to 

solve (1.6). We refer to the above iterative method suggested by Bramble and Pasciak as 

the BP method in more detail. 

Strikwerda [14] avoided the inversion of Ah by using one step of successive-over- 

relaxation. If Ah is written as 

A,, = a, - L~ - uh 
where Ah is the diagonal of Ah and LI, and Uh are strictly lower and upper triangular 

matrices respectively, then the method introduced in [14] is 

We refer to this method as the SOR method. 

The number of iterations required by the SOR method is, at best, proportional to h-I 

where 12 denotes mesh size [14], and this requires a great amount of time to get a solution 

for small mesh sizes. For example, Strikwercla and Scarbnick [12] pointed out that the SOR 

method was quite slow wlien they used clo~nain decomposition methods. An advantage of 

the SOR method is the relative simplicity of coding the algorithm. We include this method 

in our study as a representative of iterative methods that use either time-marching or SOR- 

like methods to solve the Stokes equations, see Roach [ll]. Although there is a great variety 

of such methods, they all take a number of time steps or iterations that is proportional to 

k-' at best. 

The PE method is the fastest of the methods we-compare here. Both the PE and 

the BP method have work that is proportional to the number of grid points, but the PE 



method is faster. In part this is because the PE method needs to invert Ah just once ill 

each conjugate gradient step, while the BP method needs to operate with A;: twice. The 

other reason is that the inner product used in the BP method requires considerable work 

to co~npute. This extra work cancels out the advantage of using the preconditioner. The 

exact cornparison of efficiency is done in the section 4. 

The PE method doesn't require parameters. This is a significant advantage over the 

SOR method for which good values of the parameters w and y in the SOR method can be 

hard to find. The BP method also needs a scaling parameter in the preconditioning and, 

in our experiments, the method was very sensitive to the scaling parameter. In the two 

subsecluent sections, we discuss the PE method and the BP met,hod. 

2. Analysis of the Pressure Equation Method. 

To analyze the PE method, we first examine the analogous problem for partial differ- 

ential equations. Define the operator Q for p in L 2 ( f l ) / R  as 

Q p : = v . $  

wlzere 
4 o2 6 z= ep with $Ian = 0. 

Q can be expressed symbolically as ( -a.)(-V2)-'  (e). Crozier [7] has proved the following 

theorem, see also [9]. 

Tlieorem 2.1. If R is a, conneebed. bounded domain in R2 with smooth boundary, 

then the operator Q is a bounded, positive definite operator, with bounded inverse, on 

L2 (a)/ R, 

The norm of Q is actually boulided by 1. So the above theorem can be expressed 

rnathellzatically as 

0 < C'lll4l" ( Q P . P )  5 lIP1l2 (2.1) 

for some positive constalit c' and for all p. bloreover the operator Q is self-adjoint. 

Even more call be said about the eigeilvalues of 0.  The eigenvalue 1 occurs with infinite 

multiplicity. This is on the orthogoilal compliment of the harmonic functions in L2(R). We 

conjecture, based on some evidence. that tbe rest of the eigenvalues are clustered around 

one-half. 

Conjecture. The operator Q has the eigenvalue 1 with an i'nfinite ~nultiplicit~y, and the 

rema.ining. eigenvalues have a, cluster point a,t I / ?  with no other cluster point. 
% 



If Qh is a consistent and regular finite difference approximation to Q, then one can 

expect that Q h  is positive definite and has its condition number bounded by a constant 

independent of h. 

If one uses the usual central difference scheme for Dh and Gh,  then Qh is symmetric. 

However, if central difference formulas a;e used for Dh and G h  then the scheme is not 

regular, see [13], and Qh will either be singular or be nearly singular. 

If the regularized central difference scheme (see [13]) is used for Dh and Gh, then 

the symmetry of Qh is lost. However Q h  is close to being symmetric. As our numerical 

solutions show, the ordinary conjugate gradient method works very well. 

The following is the conjugate gradient method we used to find the pressure p h ,  see 

[15]. Let (ti:, p E )  be an initial solution with u; having the true boundary values. Let 

s i  = r: = hh - Qhp; where syh ancl r;l denote the search vectors and residual vectors, 

respectively. Define q j l  = Qhr; .  The conjugate gradient method for the PE method is 

When Ah is inverted, the boundary values must be assigned to obtain a unique solu- 

tion. The residual vector r-h in the conjugate gradient method is defined to be hh  - Q h p h  

a s d  initially r i  = D,,A~,'( fh, - Ghp;,) - g],. The first row in the equation (1.2) implies 

that the boundary values of A;' (f,, - Glzp;) have to be the boundary values of u h ,  the 

velocity field of the solution. But, in later steps, when one needs to evaluate Q hrh ,  the 

zero boundary values should be used for -4;'. 

The multigrid process using V-cycles was used to invert Ah. The ordinary Gauss- 

Seidel iteration was used as the smoother. The number of relaxations in each node of the 

multigrid was 2. Injection was used to go to a coarser level and interpolation was used to 

go to a finer level. The residual was computed just before the injection process and at the 

encl of the V-cycles. For the multigrid terminology, refer to [6]. 



3. The Bramble-Pasciak Method. 

The conjugate gradient method applied to (1.6) is defined as the following, refer to [3] 

for details. Let 2; be an initial approximation to the solution pair ( u : , ~ : ) ~  with the true 

boundary values assigned for ui. With S: = T: = fh - Mhri, define for v 2 0 

Note that, from [15], 

[ f f l ' ~ ; I l  [f,+l' r;+y a ,  = and /3, = 
[ddhsi: sfl] [r;I,r;I] . 

Since h/lh is positive-definite, (3.2) shows that a ,  and 13, are nonnegative. This fact 

can be used t~ test a candidates for A;;. One possible choice for A;; is to let it be 

one V-cycle for solving 

- h u h  = f h  (3 .3)  

when the boundary values of u h  are specified. However this choice of A;: may not satisfy 

(1.7). .A better choice is to take 
1 .4& = u A ~ ;  

where A c t  is one V-cycle for solving (3 .3)  and o is a sc.aling fac.tor. If u is chosen irnprop- 

erly, then there is a chance for hlh to be indefinite. This is detected in computation by 

checking on the positivity of a ,  and 8,. By changing the value a,  one is able to find a 

-4;: satisfying (1.7). 

The parameter u is not hard to find since it is larger than and close to 1 by the following 

argument. Since A;;& = Ih ,  u - 4 ; ; ~ ~  N, Ih also for LT near I. Note -Ah - Ah1 z 0. To 

get Ah - 6-'Ahl > 0, cr needs to be larger than and close to 1. 

The following comments explain how we implemented the BP method. Some care 

must be taken to insure good efficiency. From (1.6) and the definition of PIh, the residual 

vector is 
- 4 z ( f h  - -4huh - G h p h )  

= ( I  - Afll,. - G i p h )  + Dhuh - ylL 



To compute r h ,  first set and save the vector 

for later use. Next the system 

AhO?ih = 'Wh 

is solved for Gr, with zero bounclary condition, we then have 

In this way the initial residual rfl is computed. Also set s i  = r:. 

In subsequent iterations, the inner product [rh, sh] is computed as 

where s,, = (sI,sII)t. The last expression is used to compute [rh , sh] .  Note that Ah0 is 

not used explicitly. 

To simplify this expression, we set 

incl solve 

= t h  

for t"iL with zero boundary condition. If rnl a.nd rnsr are defined to be A h s h  - t h  and 

Dh(t^,,, - s I )  respectively, then 

If the vector (ml ,  nzII)t is savecl, then [ikfhshr r h ]  is co~nputed as 

In this whole process, we need to evaluate A;:, and never need to evaluate AhO itself. 

The special forms of a ,  and 8, in (3.1) were chosen to be easily computable. 

286 



4. Analysis of Efficiency. 

In this section we estimate the total number of significant operations, which we desig- 

nate as TSO,  for each iterative method. We use these estimates to compare the efficiency 

of each of these methods. We take as a representative case the Stokes equations on a square 

in R2 or cube in R3. If N'+ 1 is the number of grid points in a coordinate direction in Rd, 
then (N - l)d is the number of interior grid points. T S O s ,  T S O F  and TSOs are the TSO 

for the SOR method, the PE method, and the BP Method, respectively. Iters, Iterp, and 

It erg are defined similarly. 

Let NA,  Nc ,  and No be the number of multiplications per grid point to apply Ah,  Gh 

and D h ,  respectively. If , z ~ h  = (u l  , . . . , ud j t  , then 

We used the usual second-order accurate discrete Lsplacian for V i .  Since Ah involves d 

scalar Laplacians, N A  ((2d + 1 Id. The regularized central differencing was used to find 

any first derivative with respect , to any direction, ancl this needs 4 points to evaluate. 

Each of (Ghph)l ,m and ( D h u l , ) l , ,  needs d first derivatives to 'be evaluated, so NG 4cl 

and !VD ==: 4d. We .consider our iLcost" to be the number of multiplications required. 

Proof. From (1.9), 

Lelnma 4.2. One V-cycle for t;he scalar second-order Laplacian costs approximately 

N\,,(:V - 1 j d  where iVv = 3"(2" l)'l(lOd + 6 ) .  

Proof. Going down along a V-cycle, we do 2 smoothing processes, 1 residual finding, 

and 1 injection at each level. On the way up, we do '5 smoothing processes and 1 interpola- 

tion at each level. So, in a V-cycle, altogether 4 smoothing processes, 1 residual finding, 1 

injection and 1 interpolation at each level are needed. On the finest level, smoothing costs 

(?d + l)(iV - l ) d ,  computing the residual is about the same! injection and interpolation 

rogether cost at most (1V - operations. 



Thus one V-cycle costs 

1 1 1 # of levels 
( 5 ( 2 d + l ) + l ) . ( N d  ( I + - ( + ( ~ )  2d 

where d is the dimension of our domain. The above number is approximately 

Lemma 4.3. T S O p  = I terp d(8 + ENv) ( N  - l)d, where i? is the average number of 

V-cycles required per iteration. 

Proof. One needs to apply the matrix Qh in each conjugate gradient iteration. From 

(4.1): we see that A;' consists of d lnultigrid operations. So, we have by Lemma 4.2, 

Lemma 4.4. TSOa z IterB . 2d(4d + 10 + Nv) . ( N  - I ) ~ .  

Proof.  In each iteration, the Inail1 effort is in finding rh, [rh ,  s h ]  and [ h f h s h ,  sh ]  from 

(3.1). By Lemma 4.2 and the equations fro111 (3.4) to (3.6), the cost to get rh is 

Evaluating [ rh ,  s h ]  costs 

NA . ( N  - lid 
by (3.7) .  The cost of evaluating [,Tfl,sh, sh]  is 

by the equations from (3.8) to (1.6). 

Adding these costs, we obtain 



By (1.8) and (2.1)) Iterp and Iter* are bounded by some constants not depending 

on mesh size. Moreover, Iters is proportional to N at best. For the test case considered 

in section 6 we find, for N = 64 and d = 2, Iters a 8(N - 1)) Iterp = 12, and I terB = 17. 

Also, ,ii was about 2 for the PE method. So, TSOs  = 208(N - ,SOp = 18561N - 1l2) 
and TSOB cz 3581(N - I ) ~ .  

We see that the PE is the fastest method, with the BP method being about twice as 

much work. The SOR method is 7 times as much work as the PE method for the one case 

considered here and is even less efficient as N increases. The numerical results in section 

G also show that based on CPU time, for this test case, the PE method is more than 7 

times faster and the BP method is about 4 times faster than the SOR method, agreeing 

with our analysis. 

5 .  The Numerical Experiments. 

For the numerical experiment, we used the Stokes equations of the form 

8~ 2 .  V2u - - = - 2 ~  sln-nn: sinny + ~ s i n n x  s i n ~ y ,  
ax 

2 = - 2 ~  COS T X  cos TTTy - T COS 7 2  COS TTy, 

on O < x, y < 1 with ,u and ,LJ specified on the boundary. 

The esact solution is given by 

11 = sin TX sin T y . 

1) = cos TX cos 'ny . 

p I cosnxsinny. 

The discretization used a uniform grid with the same nurnber of grid points in each 

direction. The second order a.ccurate five-~oint Laplacian was used to approximate v2 for 

all the iterative methods. 

We employed, for all the iterative methods, the regularized central difference (see [13]) 



given by 

where h is the grid spacing and SXo, 5,+, and 6,- are the centered, forward, and backward 

difference operators in the x-direction. The operators SyO, by+ and Sy- axe defined similarly 

for the y-direction. 

To obtain the pressure on the boundary, we used the quadratic interpolation, e.g., 

for all the iterative methods. 

The SOR method was stoppecl when the quantities 

were all less than 5. lop5 ,  l op4  and 2.10p"or mesh sizes 1/32, 1/48 and 1/64 respectively. 

These values were chosen because the quantities in (5.1) could not be made much smaller 
" 

than these values. We did not investigate why these quantities could not be made smaller, 

hut presume that it is due to the use of single precision. arithemetic. As will be seen, the 

use of higher precision would not alter our conclusions. The norms of u h  and ,uh in (5.1) 

were the discrete L2 norms, and the norm for p h  was the L2 norm in its quotient space 

(see [14]). The relaxation parameters w and y were given by 

where co=3.14 and cl=4.5. See [13], [14] for more details. 

The PE method was stopped when the residual was less than lo-" In each conjugate 

gradient iteration of the PE method, the multigrid process using V-cycles was used to 

invert Ah. We found that to achieve good overall accuracy it was only necessary to do 

enough V-cycles to reduce the residual in the .L2 norm to less than Each multigrid 

process to solve Ah'uh = fl1 for was stopped when either the number of V-cyc,les was 



4 or the residual error was less than 10-% The maximum number of V-cycles was chosen 

to be 4 since the residual error didn't change significantly after 4 V-cycles. Because the 

reduction factor of the error is small in the multigrid process, more than 4 V-cycles would 

rarely be needed. With these stoppiilg criteria, the average number of V-cycles needed in 

each conjugate gradient iteration was 2. 

The BP method was stopped when the residuals were less than 3 + lou4, lo-* and 

3 . lo-' for mesh sizes 1/32, 1/48 and 1/64 respectively. These values were chosen since, 

similar to the SOR method, the residuals decreased to values a little bit smaller than these 

values, but could not be made much smaller. Again, this is probably due to the precision 

of the computer arithmetic. In the BP method, several values were run for 0, the value of 

1 .Z worked well. 

6. Test Results. 

Tables 1, 2, and 3 show the errors for the PE method, the BP method and the 

SOR metbod. The column labeled "time" shows the CPU time required for the total 

computation. 

Table 1 

Errors and CPU time for the PE method. 

Table 2 

Error3 and CPU time for  the BP meth.od. 

-V I iter L L  p t i m e  

By comparing CPU times, one can see that the PE method is most efficient, and the 

BP methocl takes about twice as much effort, and the SOR method is least efficient, taking 



Table 3 

Errors and CPU t i m e  for the  SOR method.  

about 7 times as much time as the PE method. Note that the number of iterations taken 

by the PE method and the BP method are essentially independent of mesh size, which 

supports (1.7) and (2.1). 

The next table, Table 4 shows the accuracy of the PE method, the BP method, and 

the SOR method. The order of accuracy was obtained from 'the formula log(error(hl)/ 

error(hz))/ log(hz /hl)  where hl , h2 are mesh sizes with hl < h2. All numerical solutions 

show that they are second-order accurate. 

Table 4 

Order of accuracy for the computed solutions. 

7. Navier-Stokes Equations. 

The steady-state Navier-Stokes equations in R" are of the form 

where R is the Reynolds number. We consider the Dirichlet boundary condition 

There are several possible extensions of the PE method from the Stokes equations to 

the Navier-Stokes equatioas, clepelicling on how one linearizes the first equation in (7.1). 



To apply the PE method efficiently to (7.1), we used the following algorithm which worked 

for R up to about 100. 

(1) Start with an initial solution 

(2) Given the solution ii" , let 

where eh is a finite discretization of v, then (7.1) can be expressed as 

(3) The system (7.2) gives an equation for pressure p which is 

where the function h",s generated by fi and gh. Apply the PI3 method to (7.3), i.e., do 

several conjugate gradient iterations to update pu+l from pu. 

(4) Let 
p '; f -  Qpu+l:  
. 2  - 

then the first equation in (7.1) is the so-called convection diffusion equation 

Tc) update i?"", solve (7.4) for ,<. We discuss the solution procedure later. Go to step (2).  

For our numerical esperiment. we used the Navier-Stokes equations of the form 

U ,  + vy = 0 

on 0 < z, y < 1 where 

fi = sin TX sin ny + 0 . 5 ~  sin(2rx) - n sin r x  sin xy 

f.2 = %-In2 cos nx cos 7iy - 0 . 5 ~  sin(3ry) + .ir cos TX cos ~ y .  

The values of ,u and v are specified on the boundary. 



The exact solution is given by 

(11 = sin TX sin ny , 

v = COS 7rx cos 7ry, 

p = cos ns sin ny  . 

Because of the nonlinearity of (7 .4) ,  the Full Approximation Scheme (FAS) was used 

for nlultigrid solver. See [5] for a description of FAS. Moreover the full weighting was used 

in the fine-to-coarse transfers of both the solution and the residual functions. To employ a 

stable discretization, upwind differencing was used for the first derivatives in (7.4) when the 

mesh size 12 was larger than 2 / R U  where U is the maximum value of il on the domain, see 

[lo]. Otherwise, the central differencing was used to get the overall second-order accuracy. 

In [4], the authors mentioned that it is better to employ upwind differencing only in the 

relaxation sweeps, central differencing in the residual transfers, but we obtained the best 

numerical solution when the same differencing was used in both relaxation sweeps and 
4 

residual transfers. Also, the computation of fl at coarser levels used upwind differencing. 

Table 5 and Table 6 show the error and accuracy of the solution when R is 30. Notice 

that the ~liethod is second-order accurate. 

Table 5 

Errors for R = 90. 

Table 6 

Accuracy of the s01ution for R = 30. 



8. Conclusions. 

The pressure equation method has been show; to be an efficient numerical method 

for solving the steady Stokes equations. Since the work is essentially proportional to the 

number of grid points, the efficiency of this method is exceptional. We have also shown that 

the method advocated by Bramble and Pasciak is not as efficient for the finite difference 

schemes used here. 

The pressure equation method has been extended to the Navier-Stokes equations for 

low Reynolds numbers. Research is continuing on improving this method. Work is also 

being done on applying the method to time-dependent problems and using the method 

with domain decomposition. 
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NUMERICAL SIMULATION OF SABOT DISCARD AERODYNAMICS 
USING COMPUTATIONAL FLUID DYNAMICS 

Michael J. Nusca 
Free Flight Aerodynamics Branch, Launch and Flight Division 

U.S. Army Ballistic Research Laboratory 
Aberdeen Proving Ground, MD 21005 

Abstract. Computational fluid dynamics (CFD) solutions of the three-dimensional 
Navier-Stokes equations have been applied to sabot discard aerodynamics for gun-launched, 
saboted, armor-piercing projectiles. The portion of the launch cycle which involves strong 
aerodynamic interference between the projectile and discarding sabot (carrier) components 
has been investigated. Three sabot components were located symmetrically at various posi- 
tions near the projectile and at angle of attack. The complex system of shock/boundary-layer 
interactions between multiple bodies (projectile and sabots), during the discard sequence, 
has been numerically simulated. Computed and measured surface pressures compare fa- 
vorably for Mach number 4.5 and Reynolds number six million per meter. Comparison of 
symmetric sabot discard trajectories predicted using CFD and the AVCO sabot design code 
are shown. 

Introduction. Currently, the most widely utilized design for kinetic energy, antitank 
applications is the gun-launched, fin-stabilized, long-rod projectile. The cross-sectional di- 
ameter of the rod is smaller than the diameter of the gun bore. Fins span the area between 
the rod and the gun tube. Therefore, a sabot (or carrier) is required to reduce in-bore bal- 
loting of the projectile. Once free of the gun tube the sabot must be discarded in order 
to permit unconstrained, low-drag flight to the target. The sabot is divided into three or 
four components along axial planes. For smooth bore gun tubes, these components separate 
from the projectile under the action of elastic and aerodynamic loads. Figure 1 shows a 
photograph and shadowgraph of typical sabot discard during free flight. 

It has been demonstrated1 that aerodynamic interference generated by the sabot com- 
ponents can be a significant source of projectile launch disturbance leading to unacceptable 
loss of accuracy at the target. Perturbationi to the projectile's trajectory are magnified by 
geometric asymmetry in the discard pattern and by extended periods during launch when 
the sabot components are in close proximity to the projectile. A detailed understanding of 
the three-dimensional shock/boundary-layer interference flowfield between the sabot and the 
projectile (see Fig lb)  is not available. 

An extensive experimental program to investigate the aerodynamics of sabot discard 
has been ~onducted.~ During these tests, a projectile and three sabot components were 
sting-mounted in the NASA Langley Unitary Plan wind tunnel facility 4 x 4 ft test section. 
The model configuration included a stationary cone-cylinder projectile (without fins) at 
zero angle-of-attack and three 120" included-angle sabot components located symmetrically 
around the projectile. Figure 2a shows a schematic (cross-section) of the wind tunnel model 
(one sabot shown). The cylinder section of the projectile was 50.8mm in diameter; the 
projectile had a length-to-diameter ratio of 10.5 and a 30" included-angle conical nose. Fifty 
static pressure taps were positioned on the surface between the 120" planes of symmetry, 



with four taps on the conical section. The sabot had cylindrical inner and outer surfaces 
of radii 25.4 and 76.2mm, respectively, with the a leading edge chamfer of 40". Fifty static 
pressure taps were located on the inner and outer surfaces. The test Mach number and 
Reynolds number were 4.5 and 6.6 million per meter, respectively. A typical flight Reynolds 
number of 89 million per meter could not be reproduced in the tunnel; unfortunately, test 
results showed regions of shock/boundary-layer interaction, separated flow and other viscous 
phenomena. 

Initial analytical work for sabot discard aerodynamics relied on the Newtonian flow ap- 
proximation and empirical aerodynamic interaction analyses; for example the AVCO code.3~4 
These assumptions make discard computations tractable and in some cases represent accu- 
rate approximations. However, it is apparent that the multiple shock/expansion interaction 
flowfield between the projectile and sabot petals is an essential part of the analysis. The 
initial version of the AVCO code3 evaluated the aerodynamic loadings on the sabot seg- 
ments using Newtonian theory and a subsonic/supersonic inlet model; pressure forces on 
each surface of the segments, including sabot sides, were obtained separately and summed 
to provide results for total force and moments (excluding shear stress components). The 
code assumed that the aerodynamic coefficients for the projectile were known. Although 
the sabot separation process is initially dominated by aerodynamic interaction, the code as- 
sumed one-dimensional flow between the bodies. Recent versions4 include an integrated flow 
element approach utilizing local shock/expansion procedures based on sabot surface pres- 
sures measured during wind tunnel tests.2 These test data are used to determine pressure 
levels on certain sabot locations with linear variations assumed between these points. As a 
result, the code includes the effects of pressure pulses on the bodies caused by impinging and 
reflecting shock waves. When the sabot petals are not in close proximity to the projectile, 
Newtonian flow theory is used. In some cases, however, these code improvements produced 
overestimates of the discard process in contrast to initial code predictions. Consideration is 
limited to a general sabot configuration which is bounded radially by two cylindrical surfaces 
and axially by two conical surfaces. 

This paper describes computational fluid dynamics (CFD) solutions applied to the 
three-dimensional (3D) Navier-Stokes equations for symmetric sabot discard. During sym- 
metric discard multiple sabot components are assumed to follow identical trajectories away 
from the projectile, and the projectile is assumed to be at zero angle-of-attack. As shown 
in Figure 2b, the computational domain can therefore be limited to a smaller portion of 
the entire flowfield around the configuration; this reduces computational grid size, computer 
memory, and computer run time. For three sabot components this domain spans a 60" sec- 
tor from sabot midplane to symmetry plane between neighboring sabot components. For 
asymmetric discard the computational domain would be greatly expanded (i.e. a full 360" 
sector) with a corresponding increase in computer requirements. The portion of the launch 
cycle which involves strong aerodynamic interference between the projectile and the sabot 
components is examined. Thus, simulations are performed for small vertical separation of 
the sabot from the projectile surface, Ay/D 5 1 (D = projectile rod diameter = 1 cal. 
or 50.8mm in Fig. 2a) and sabot angle of attack a 5 10". Previous work described code 
validation with wind tunnel results.516 A four-stage sabot discard sequence was numerically 
simulated for the wind tunnel model configurati~n~-~ This simulation has been extended to 
ten stages and resultant aerodynamic forces and moments computed from the flowfield. The 



symmetric sabot discard trajectory can then be simulated and compared to results obtained 
using the AVCO code. The flowfield for a M865 projectile/sabot has also been simulated. 

Computational Approach. CFD can be used to simulate the compressible flowfield 
around aerodynamic bodies by solving the 3D Reynolds-averaged Navier-Stokes (RANS) 
equations. The USA-PG3 code was developed by Chakravarthy9Jo The RANS equations are 
written using a perfect gas assumption. Both laminar and turbulent flows can be investigated 
thus, a turbulence model" is required for closure. In addition, backflow regions can be 
present thus, a backflow turbulence model" is included. The equations are transformed into 
conservation law form and discretized using finite-volume approximations. The USA-PG3 
code uses a class of numerical algorithms termed total variational diminishing (TVD). The 
resulting set of equations is solved'using an implicit, factored, time-stepping algorithm. The 
solution takes place on a computational grid that is generated around the configuration in 
zones; zonal boundaries are transparent to the flowfield. 

Equations of Motion. The RANS equations for 3D flow are written in the following 
conservation form. The dependent variables u, v, w, and e are mass-averaged. 

Arrays G and H are similar in form to array F (see Ref. 5). Normal stress (a), shear 
stress ( T ) ,  heat transfer (6) and energy (e) are defined el~ewhere.~ The laminar and eddy 
viscosities, p aad pt,  are implicitly divided by the reference Reynolds number (Re). The flow 
medium is assumed to be a perfect gas satisfying the equation of state p = pRT. A power 
law13 is used to relate molecular viscosity, p, to temperature. The laminar and turbulent 
Prandtl numbers, Pr and Prt, are assumed constant with values of 0.72 and 0.9 respectively. 
The ratio of specific heats, 7, is also assumed constant. Assuming a time-invariant grid and 
using the transformation of coordinates implied by T = t, = ((2, y, z ) ,  q = ~ ( z ,  y, Z) and 
C = C(x, y, z ) ,  Equation 1 can be recast into conservation form where (, q and < are the new 
independent variables and xc, x,, XC, yt, y,, y ~ ,  zc, z, and r~ are the nine transformation co- 
efficients obtained numerically from the mapping procedure. The transformed time variable 
is represented by T .  

The shock/boundary-layer interference flowfield between projectile and sabots can in- 
clude regions of recirculating flow. To improve the predictive capability of separated flows 
using RANS codes a new turbulence model has been.iecently developed by Goldberg.12 The 
new model is based on experimental observations of detached flows and allows turbulence 
due to local shear effects to be taken into account in addition to wall-shear contributions. 
The velocity scale function, which is normally yw, is modified as (y - y,)w (for y 2 ye). Here, 
w is the magnitude of the local vorticity and ye is the location away from the wall where the 



vorticity first diminishes to a small fraction of its local maximum magnitude. From this lo- 
cation onward the length scale is given by y,,- ye. The model prescribes turbulence kinetic 
energy and dissipation analytically within backflows. A formula for the eddy viscosity (p t )  
within backflows is derived and used for the RANS equations when calculations are done 
inside separation bubbles. Outside of them, another turbulence model'' supplies the values 
of eddy viscosity. 

Computational Algorithm. The spatial discretization technique for the equations of mo- 
tion must successfully capture t he complex physics of interacting pro jectilelsabot flowfields. 
The TVD formulation for the convective terms along with a special treatment of the dissi- 
pative terms (Eq. 1) provides an appropriate simulation- In recent years, TVD formulations 
have been constructed for shock-capturing finite-difference methods.gJ0 Near large gradients 
in the solution (extrema) TVD algorithms automatically reduce to first-order accurate dis- 
cretization~ locally while away from extrema they can be constructed to be of higher-order 
accuracy. This local effect restricts the maximum global accuracy possible for TVD algo- 
rithms to third order for steady-state solutions. TVD methods manifest many properties 
desirable in numerical solution procedures. By design they avoid numerical oscillations and 
"expansion shocks" while at the same time being of higher-order accuracy. TVD formu- 
lations are also based on the principle of discrete or numerical conservation which is the 
numerical analog of physical conservation of mass, momentum, and energy. Thus, TVD al- 
gorithms can "capture" flowfield discontinuities (e.g. shock waves) with high resolution. At 
a fundamental level they are based on upwind algorithms; therefore, they closely simulate 
the signal propagation properties of hyperbolic equations. Algorithms based on the TVD for- 
mulation are completely defined. In contrast, algorithms based solely on central differences 
involve global dissipation terms for stability and have one or more coefficients that must be 
judiciously chosen to achieve desirable results. Any conventional time discretization method 
suitable for the Navier-Stokes equations can be used together with this space discretization 
methodology; for example, approximate factorization and relaxation techniques. 

Computational Grid. Numerical simulation of the interacting flowfield about projec- 
tilelsabot combinations is complicated by the non-axisymmetric, multiple-wall geometry. 
 he computational domain is divided into zones of simple geometric shape. In aach zone 
an algebraic grid is generated with grid clustering near walls and high flow gradient regions. 
The computational method is constructed such that each zone is considered an independent 
module interacting with other zones before or after the information corresponding to each 
zone is updated one cycle. Zonal boundaries are transparent to the flowfield. A typical 
6-zone grid used for computations described in this paper is designed as follows (see Ref. 5): 
grid zone 1 covers the projectile from nose to base, zone 2 covers the area between zone 1 and 
the inner surface of the sabot, zone 4 covers the area between the outer surface of the sabot 
and the uppermost extent of the computational domain, zones 5 and 6 cover the projectile 
and sabot base regions, respectively. Zones 1 thru 6, excluding zone 3, extend from 4 = 0 
to 60' in the azimuthal direction. Grid zone 3 covers the area between the sabot and the 
azimuthal extent of the computational domain. The entire 6-zone grid consists of 300,000 
nodes and requires 10 million words of memory on a CRAY-2 supercomputer. Converged 
solutions require about 10 CPU hours. 

Results. Figure 3 shows the measured2 and computed pressure distributions over the 
projectile and sabot surface in the pitch plane; the pitch plane (Fig. 2b) bisects the azimuthal 



planform of the sabot. Three sabot components are modeled with sabot bases aligned with 
the projectile base, A x l D  = 0, projectile surface and sabot inner surface vertically separated 
by A y l D  = .75, and the sabots at zero angle-of-attack. Laminar boundary layer modeling 
was employed; turbulent solutions are described else~here-~fi  Computed pressures on the 
projectile surface agree favorably with the magnitude and location of a measured pressure 
peak ( x / D  .Y 4.22) as well as elevated pressures preceding this peak, 2 5 x l D  5 4.22. The 
location of this pressure peak corresponds to the termination of a low speed flow region 
on the projectile. Downstream of the pressure peak the agreement between computation 
and measurement is also favorable. On the inner surface of the sabot, numerical simulation 
adequately predicts the pressure level and trend on the sabot slant surface, 2.75 5 xlD 5 
3.94. Pressure levels on the rest of the sabot section agree with measurements including a 
pressure rise at x/D 21 5.5. 

References 5-8 describe further results obtained for the wind tunnel model. For cases 
where the sabot petals are close to the projectile (AylD 5 .75) a low speed (M 5 1) 
recirculating flow pocket forms between the projectile and the beveled section of the sabot 
petals. This causes a strong oblique shock on the projectile surface where the pocket forms 
and a high pressure pulse where the pocket terminates. As the sabot petals discard, a normal 
shock, formed at the leading edge of the sabot, becomes an oblique shock that intersects the 
projectile surface in a regular reflection. Inviscid flow simulatio~ls require significantly less 
computer time by excluding the viscous terms in the Navier-Stokes equations. However, 
the inviscid simulation predicts lower pressures on the projectile and sabot than measured 
or predicted by laminar and turbulent simulations. Turbulent calculatioas are similar to 
laminar for the low Reynolds number wind tunnel data. Comparison of CFD predictions 
with projectile surface data measured azimuthally about the projectile agree with the trend 
but not the magnitude these pressures (in particular the pressure peak, as shown in Figure 3, 
reduces as measured azimuthally about the body). Azimuthal grid refinement increases the 
level of agreement. Computations for the 2D/axisyrnmetric equivalent of three sabot petals 
(i.e. petals joined into a concentric tube with the projectile centerline) are computationally 
inexpensive but result in flowfields that are very different from the 3D case. 

Figure 4a thru 4j show computed laminar, steady-state, pressure contours in the pitch 
plane for the forward part of the projectile/sabot configuration and ten stages of the pro- 
grammed discard sequence. Three horizontal lines extending from XI D = 0 to 7.03 are zonal 
grid boundaries. Large flow gradients (e.g. shock waves) are indicated by clustering of pres- 
sure contour lines? Pressure levels are the same for Figs 4b-4j, 1 < PIP, 5 40, AP/P, = -5, 
and for Fig 4a. 1 5 PIP, 5 100, APIP, = 1 due to higher stagnation pressures. 

The programmed discard sequence shown in Figs 4a-4j covers four vertical displacements 
of the sabot inner surface with respect to the projectile surface (AylD) and six sabot angles 
of attack (with respect to the projectile). The projectile was assumed to be at zero yaw with 
respect to the freestream and the Mach number was constant as 4.5, Since the time during 
which the sabot petals and projectile are in close proximity is usually short (about 2 ms 
or 1.5 meters from the gun), the assumption of constant Mach number is not unreasonable. 
This quasi-steady, programmed simulation ignores the flow time dynamics and does not link 
the aerodynamic forces to the sabot motion. However, such a simulation serves as a prelude 
to computations that utilize coupling of unsteady aerodynamics and rigid-body motion. 



As seen in Figs 4a-4j, the sabot generates a strong series of-shock waves, beginning 
as a detached nearly-normal shock that intersects the projectile surface as a strong oblique 
shock, and ending a s  an attached oblique shock that intersect the projectile surface in a 
regular reflection. Flow between the sabot inner surface and the projectile surface begins as 
a choked nearly-uniform high pressure field with transition into reflected shocks (from sabot 
back to projectile) that become more pronounced. Beginning with Fig. 4e, a low pressure 
bubble develops on the sabot inner surface extending from x / D  = 3.94 to the next shock 
impingement on the sabot surface. Combined with the high pressure on. the sabot beveled 
section (2.75 5 x / D  5 3.94) this low pressure region provideg a force couple that promotes 
sabot discard. 

Using the simulated sabot discard sequence described above, the corresponding aero- 
dynamic forces (lift and drag)- and pitching moment can be computed. This is accomplished 
by integrating the sabot surface pressure and shear stress distributions for each stage of the 
discard sequence. The sabot mass properties are used to compute vertical and horizontal 
accelerations which are assembled in a table as functions of sabot Ay/D and a. A modified 
point-mass trajectory model is used to compute the sabot center of gravity (CG) location as 
a function of time using double-interpolation from values in the table. Figure 5 shows a com- 
parison between the sabot CG location (both in the axial and radial directions) computed 
using the AVCO semi-empirical code and the present simulation using CFD. The present 
predictions match the AVCO values for eacly times, but diverge later in the simulated dis- 
card event. In the AVCO simulation sabot discard progresses faster than predicted using the 
current method. The relatively good agreement for early times in the discard event may be a 
result of the sabot/projectile interference methods included in the AVCO code. Reasons for 
discrepancies in the predictions at later times are still under investigation. One possibility is 
that the Newtonian theory used to predict aerodynamic forces when the sabot is not in close 
proximity to the projectile, results is lift and drag values that are larger than predicted using 
CFD. In comparing the AVCO prediction to that using CFD, several points should be noted. 
Both methods used the same sabot geometry and mass properties, freestream flow condi- 
tions and assumed a symmetric discard. Both methods are quasi-steady in nature, using a 
database of steady aerodynamic force predictions to simulate a dynamic event. However, 
the source of the aerodynamic data is very different between the codes (see Introduction for 
a discussion of the AVCO code). By virtue of the rapid aerodynamic methods incorporated 
into the AVCO code, a much larger aerodynamic force and moment database is available. 
The trajectory time-integration step for the AVCO code was much smaller that that used in 
the present study. 

Figure 6a shows the projectile/sabot configuration of the Army M865 anti-tank round. 
The configuration has been altered somewhat in order to simplify computational grid gener- 
ation. These alterations are also illustrated in Figure 6a. The sabot was located .75 calibers 
above the projectile (1 caliber = 38mm) and at zero angle-of-attack. A simulated sabot 
discard sequence like that used for the wind tunnel model is in progress. Figure 6b shows 
the laminar flow pressure contours for the M865. The Reynolds number for this flow is 6.6 
million per meter. The freestream Mach is 4.5. 

Conclusions and Future Work. CFD solutions of the 3D Navier-Stokes equations 
have been applied to the aerodynamics of symmetric sabot discard. A steady simulated 
sabot discard sequence using fixed sabot locations (with respect to the projectile) reveals 



shock/shock and shock/boundary-layer interactions in the flowfield. The freestream Mach 
number was 4.5 and laminar boundary layer modeling was employed for Re 6.6 million per 
meter. Numerical simulations have also been performed using Re -of 89 million per meter 
and flows with turbulence modelingm5 The steady-state approach that uses predetermined 
sabot positions has lead to enhanced understanding of the discard event, serving as a prelude 
to computations that utilize coupling of unsteady aerodynamics and rigid-body motion. A 
technique for the integration of surface pressures and shear stress was developed for the 
wind tunnel model sabot. A more general method is being developed to determine the 
aerodynamic forces and moments acting on the M865 sabot. 

Numerical mesh generation for the solution of complex flowfields about realistic pro- 
jectilelsabot configurations may be greatly simplified by the use of unstructured (i.e. finite- 
element like) grids. Figure 7 shows the planar view (i.e. slice thru the pitch plane of the 
projectile/sabot) of a typical unstructured grid for the Army M829 sabot. Solution of the 
Euler equations on unstructured grids is being accomplished by Chakravarthy14. Work on 
unstructured grids and moving grid zones will eventually lead to a more realistic simulation 
of the discard event. 

Acknowledgement. Dr. E.M. Schmidt, Chief, Fluid Physics Branch, Launch and 
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Fig. la. Photograph of typical kinetic energy long-rod projectile in free flight during 
three-petal sabot discard. 



Fig. lb .  Shadowgraph of typical kinetic en- 
ergy long-rod projectile in free flight during 
four-petal sabot discard. 
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Fig. 2a. Schematic of wind tunnel model in 
the pitch plane (9 = O,lSOO). 

Fig. 2b. Schematic of symmetric sabot dis- 
card (rear-view) showing computational domain. 
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Fig. 3. Laminar flow pressure distributions 
for projectile ancl sabot surfaces in the pitch 
plane (4 = 0, lSOO), A x l D  = 0, AylD = .75, 
a = oO. 

Fig. 4a. Laminar flow pressure contours in 
the pitch plane (4 = 0, lSOO) for AxlD = 0, 
A y l D  = 0.0, a = 0'. 

Fig. 4b. Ay/D = .SO, a = 0'. 



Fig. 4c. Ay/D = -50, 0 = 20. 
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Fig. 4d. Ay/D = .75, a. = 0". 

Fig. 4e. Ay/D = .75,  a = 20 

Fig. 4f. Ay/D = .75, cr = 4'. 

Fig. 4g. Ay/D = .75, a = 6". 

Fig. 4h. Ay/D = .75, cr = So. 



Fig. 4i. Ay/D = 1.0, a = 8'. Fig. 4j. Ay/D = 1.0, a = 100. 
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Fig. 5 .  Trajectory of sabot center of mass computed using AVCO design code 
and present simulation using CFD. 



Fig. 6a. M865 projectile/sabot configuration. Solid line is actual geometry. 
Dashed line is computational geometry. 

Fig. 6b. Laminar flow pressure contours in the pitch plane (4 = 0;1800) for 
M865 sabot, AxlD = .957, A y l D  = .75, cw = 0'. 

Fig. 7. Unstructured grid (pitch plane view) for M829 projectile/sabot. 
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ABSTRACT. The motivation for this task comes from the needs 
of future hypervelocity projectile surrounded by asymmetric 
flow due to angle of attack and/or fins in case of kinetic 
energy projectile. In either case. unsteady and three- 
dimensional effects, large and nonuniform heat fluxes, 
tedious and repetetive number crunching capabilities of 
supercomputers dictate optimum numerical techniques and 
predictive critical time steps for successful and practical 
solutions. Finite element modeling is ideal whenever there 
is geometrical complexity, coatings, composite and multi 
materials. However, classical finite element technique 
yields a particular equation. There may be same finite 
difference schemes superior to classical finite element 
technique. Therefore, various finite difference schemes are 
derived and their characteristics are discussed applicable to 
transient three dimensional heat conduction problems. 

INTRODUCTION. Carslaw and Jaeger 1 1 3  summarized numerous 
analytical solutions for rectangular regions, cylinders. and 
spheres under a variety of initial and boundary conditions. 
However, i f  the body has an irregular shape, such as 
projectile or gun barrel with rifling inside and variable 
outside diameter. the possibility of obtaining an analytical 
solution is negligible and in such circumstances o n e h a s  to 
rely on numerical methods. Different numerical methods have 
been used for the solution of transient heat conduction 
problems. The most popular numerical methods are based on 
finite element and finite difference techniques. Recently, 
boundary element techniques are also introduced. Originally, 
the finite element method (FEM) was introduced as a method of 
direct structural analysis. Wilson and Nickel 121 applied 
the finite element method in conjuction with a variational 
principle derived by Gurtin 131 to solve transient heat 
conduction problems. This method has many advantages over 
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other numerical approaches. The FEM is completely general 
with respect to geometry and material properties. Complex 
bodies composed of many different anisotropic materials are 
easily represented. Temperature or heat flux boundary 
conditions may be specified at any point within the finite 
element system. Mathematically , it.could be shown that the 
method converges to the exact solution as the number of 
elements is increased. However, limited use is found to 
solve transient heat conduction problems with radiation 
boundary conditions because of difficulties associated with 
nonlinearity created by radiative heating or cooling 
phenomena. 

Two categories of finite difference equations (FDMI have been 
employed: The explicit finite difference equations (the 
temperature at time t is expressed in terms of the 
temperatures at one time interval, A*, earlier) and the 
implicit finite difference equations. They represent a direct 
approximation approach to the partial differential equation 
type of formulation. The finite element analysis belongs to 
the class of implicit technique in finite difference methods. 
Indeed, Yalamanchili 14,51 proved that finite element and 
finite difference methods belong to the class of method of 
weighted regiduala, in particular, Galerkin and Collocation 
methods respectively for transient two dimensional heat 
conduction problems. 

Numerical approximations to solutions of the heat flow 
equation in three space dimensions may be obtained by the 
step-wise solution of an associated difference equation. It 
is the intent of this paper to develop several difference 
equations that may contain from a minimum of 7 nodes to a 
maximum of 27 nodal points available in a typical three 
dimensional element. Of course, the accuracy of these finite 
difference equations vary by order# of magnitude. However, 
it is straight forward to generate a system of algebraic 
equations and to express it in a matrix form for any chosen 
finite difference scheme. Proper numbering of nodes is 
essential in order to obtain a feasible solution even though 
the matrix is sparse due to an exponential increase in 
arithmetic operations especially for transient three 
dimensional problems. 

LAPLACIAN TERM APPROXIMATIONS. Consider the heat conduction 
equation in a three dimensional body of length (a), width (bl 
and height .(c) with the following boundary conditions: 



For any chosen finite increment A x ,  B y ,  A z  and At in both 
finite difference and finite element system with a fixed 
value of ~&t( \ lh%~~\/b~?-+\]d+> , :the eiforts required to 
calculate the solution up to a given time is proportional to 
the number of spatial nodal points raised to the power of 
three. The number of spatial points changes drastically for 
multi dimensional problems. Therefore, a variety of finite 
difference schemes, as well as the stability, accuracy, and 
oscillation characteristics of three dimensional problems are 
essential for economical and practical reasons. The 
following analysis is prepared to fulfill auch an objective 
among other considerations. Revmi ting the first time 
derivative in a finite difference form, the governing 
equation becomes 

Where *is a weighted paramenter with respect to time and 
varies between 0 and 1 and the Laplacian term, V ~ T ,  is 
written as 

Let us now derive second derivative ( 3%) following 
Strickwerda 1 6 , 7 1 .  By the use of Taylor'a series (spatial 
step size = h ) ,  one can derive the following: 

Where 6+ and 6- are forward and backward differences 
respectively. Eq (61 can be written as. 



Second derivatives can be formulated by expansion into series 
and eventually squaring of eq (7): 

Substitution of eq ( 8 )  into eq (5) yields the following 
result : 

One may obtain the following equation by clearing out 
denominators: 

Further simplification yields the following result: 

Three finite difference schemes may be formed from eq ( 1  1) . 
The simplist and also the least accurate is 0 (h 1 :  

Substitution of central second difference operator in all 
three directions yields the following result: 

o f  = (~_.,*Tb-,-c Tab- - b roo.+Too+ +-To+o+r,,,)/r: (13) 

Here, the commas between subscripts are omitted for 
conciseness. For example, T - a o  is equivalent to TL-, j, 
in a formal notation. Similarly, To-o is same as di,i-,, k . 
Next, another finite difference scheme can be formulated by 
retaining terms up to 0 ( h ?  from eq (11). 



One can writs eq (14) in a finite difference form i f  we can 
define terms, such as gXag+. This term can be written as 

Substitution of eq ( 1 5 )  and similar results of other terms 
into eq ( 1 4 )  yields the following 19-point finite difference 
formula for Laplacian . U? : 

The accuracy is O(hY 1 ,  Another most accurate formula for 
Lap acian term can be formulated by retaining terms up to L O(h 1 in eq (11): 

a "L 
3 

V-= % [\+ $ ~i )~h+ 
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Where 'rT is the product symbol. The last term alone contains 
all 27 nodal points i f  expanded in a manner similar to 
eq (151. The final result of the last term is as follows: 



Substitution of eq (19) and eq (16) into eq (181 yields the 
following most accurate (0 (h 1 )  finite di f f srence 
approximation for the Laplacian term 

As before, the subscripts i,j and k, and commas are omitted. 
Same notation, as explained above,  is used. For example, 

So far, three finite difference schemes are derived for the 
Laplacian term, i. e. , eq (131 , eq (16) , and eq (201  with 
orders of accuracy 0(hY 1 , 0(h% 1 , and O(hb) ~espectively. 
However, it doesn't seem to be enough variety to compare 
especially finite difference and finite element schemes. 
Towards this goal, another finite difference scheme for three 
dimensional laplacian term is derived. This one also contain 
all 27 nodal points available in a typical three dimensional 
finite element by combination of nine rays (lines) passing 
through central node (i.j,k) and central second derivatives 
along those rays. The resulting finite difference 
approximation for the Laplaeizn term is given below. However, 
the order of accuracy is O(h 1 far lower than its 27-node 
counterpart. 

V- = (T.--+T_-,+T--++T-,_~ T-~,+T-.++ T-+-%+ af T-+t 



FINITE DIFFERENCE SHEMES. Until now,  a variety of finite 
difference shemes are derived for three dimensional Laplacian 
term in order to obtain not only more accurate numerical 
solutions but also to unify and compare finite element and 
finite difference techniques. In general, it is understood 
that the higher order scheme yields more accurate solution 
than a lower order scheme. The accuracy of the numerical 
results can also be improved by reducing the grid spacing, h. 
Usually, grid spacing reduction improves the numerical 
results up to a certain extent. At this point, the numerical 
resutls are as accurate as can be with the chosen order of 
finite difference scheme. Further reduction in grid spacing 
will lead to increasing round off errors due to enormous 
increase in number of computations and thus, overall, less 
accurate results. However, the accuracy of the results can 
be improved by the use of higher order finite difference 
scheme. 

The accuracy of a numerical solution may also be improved by 
proper selection of the weighted parameter, , introduced in 
eq ( 4 ) .  This parameter also plays a major role in stability 
and oscillation characteristics of a numerical scheme. The 
parameter + (0$+&1) allows a weighted average of sum of three 
second order spatial derivatives at two discrete times (old 
and new) . An explicit scheme is the result when is set to 
zero; otherwise, an implicit scheme will be the result for 
remaining range of parameter,+. 

The generic Laplacian is represented by equations (131, (161, 
(201 and (21) . Appropriate time superscripts (o = ,old time, 
+ = new time) have to be introduced into Laplacian finite 
difference approximations before substitution of equations 
(13) , (16) , ( 2 0 )  and (21) into eq ( 4 )  in order to obtain 
various finite difference schemes. The format of finite 
difference equation for an unsteady three dimensional problem 
is shown in eq ( 2 2 ) .  



However ,  the coefficients are different. These are given in 
Table 1 for all Laplacian term approximations L13, L16, L20 
and L21 discussed above. L13, L16, L20 and L21 are named 
after equations (13, (161, ( 2 0 )  and ( 2 1 )  respectively. 6 is 
the wslknown dirncnsionless Fourier number ( d ~ t / h =  1 .  The 
quantity on the right hand side of eq (221 i s  known due to 
known nodal temperatures at the old time. One can generate a 
system of equations, one at each interior node. Even i f  one 
divides the body into 1 1  equal parts in each direction, 1000 
equations with 1000 unknows will be generated. However, 
there ape atmost 27 unknowns in each equation. Therefore, a 
sparse matrix is generated. Special numbering of nodes 
yields a minimum bandwidth for nonzero terms. Sparse matrix 
algorithms that take advantage of minimum bandwidth, storage 
and e f - f i c i n t  computations are available in the literature for 
its solution. The coefficient A is assaciated with 8 corner 
nodal temperatures whereas the coefficient B is associated 
with 12 edge nodal temperatures. Similarly, the coefficient C 
i s  connected with 6 face center nodal temperatures. The 
coefficient D exists only with one central nodal temperature. 
The coefficients E, F, G, and H are associated with the same 
nodal temperatures as the coefficients A, B, C, and D 
respectively. 

TABLE 1 COEFFICf ENTS OF VARIOUS FIN1 TE DIFFERENCE EQUATIONS 

OTHER FINITE DIFFERENCE SCHEMES. It i s  obvious, by now, that 
one is confornted with a large system of equations for multi 
dimensional.problems and its numerical solution is expensive 
either by the use of direct or indirect (iterative) methods 
o f  system of equations generated by implicit techniques. The 
utilization of explicit techniques is limited due to small 
time i t e p  re.quirernenta in order to enforce stability. 
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Several methods that employ the useful characteristics of 
both implicit and explicit methods are also developed. These 
are becoming the most popular techniques for solving 
parabolic partial differential equations, such as transient 
heat conduction in a multi dimensional environment. In 
particular, the alternating direction implicit (AD11 method 
is ideal for solving a two dimensional problem. This method 
uses the implicit formulation in one direction and considers 
the other direction explicitly. The two directions are 
interchanged from one time step to the next time step. This 
results in a simple tridiagonal system of equations even for 
a two-dimensional problem as in a one-dimensional problem. 
The AD1 method may belong to the class of splitting methods. 

The Crank-Nicolson (CN) implicit scheme, equals one-half, 
is mentioned extensively in the literature for the solution 
of transient heat conduction problems. The Douglas scheme is 
not mentioned that much. However, the following expamle 
(Table 2) shows that Douglas scheme is better then Crank- 
Nicolson scheme. 

Table 2. Comparison of Douglas & CN (t=O.l.e=l) 

Exact 0.0934 0 .1776  0 . 2 4 4 4  0 . 2 8 7 3  0 .3021  

Douglas 0.0941 0.1789 0 . 2 4 6 3  0 .2895 0.3044 

One can improve the stability of classical explicit finite 
difference technique ( G f  1/61 by the following equation 
(Qf 1/21 for a three dimensional problem: 

Here, computations are required at all 27 grid points at the 
old time level. However, it is more economical i f  it is used 
in the following split form: 

Here, the problem is how to satisfy the requirement of 



intermediate boundary conditions within the time step. 
Therefore, explicit difference methods are rarely used to 
solve initial boundary value problems in three dimensional 
problems. More of ten, AD1 and local ly-one-dimensional (LOD)  
schemes are used instead of explicit methods. 

The Douglas-Rachford 181 AD1 schema for a three dimensional 
case can be written as 

The following AD1 scheme is more accurate depending on 
parameters, and@ : 

Of course, this can be split into three equations involving 
the solution of only tridiagonal system o f  equations along x ,  
y ,  and z at first, second and third steps, respectively. It 
is better to experiment various schemes not only mentioned 
above but also available elsewhere and decide the most 
appropriate one based on accuracy, stability and computer 
time due to need of repetetive and intense computations for a 
transient three dimensional problem. Keep in mind, 
practicality and boundary conditions in a final showdown. 

CONCLUSIONS: The simulation of hypesvelocity projectile, 
in-flight, involves not only eomputatianal fluid dynamic 
study around the projectile but also heat transfer in the 
projectile. It is highly desirable to couple the two 
problems whenever feasible. Derived various finite 
dif f erence approximations, ranging in accuracy 0 (h-1 to 
0 (hb) , for Laplacian term in three dimensions. Constructed 
numerous finite difference formulas, both explicit and 
implicit, for the Solution of transient three dimensional 
heat conduction problems. One of the finite difference 
formula is found to be equivalent to classical finite element 
scheme. However, it is not proved here due to space and time 
limitations. One of the numerical example indicates that the 
Douglas scheme is superior to Crank -Nicolson scheme. Also, 
other economical schemes such as split methods, alternating 
direction implicit, locally one dimensional and explicit 
methods are briefly tonched due to practical considerations. 
However, limited experime'ntation is desirable baaed on a 
given problem and boundary conditions. 
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1 Introduction 

Equational logic is one of the most important domains of research in computer science. Specifications of 
types of data structures and assertions about the behaviour of programs are naturally written in equational 
form. Programs made of equations are called equational pmgmms and appear in functional programming, logic 
programming and in most combinations of high level programming paradigms [19, 231. First order logic can be 
expressed equationally [20]. This formulation makes it possible to express logic programming equationally and 
to employ the computational model of equational languages in logic programming [7]. Set theory can also be 
expressed equationally [33], enabling one to reason about query languages and optimization in data bases [ll]. 

Such a wide range of applications, not to mention the traditional applications to algebra, makes automated 
deduction in equational logic an important subject of research. However, the seemingly insurmountable search 
space caused by the symmetry and replacement properties of the equality predicate had been a serious obstacle 
which bafaed researchers in automated deduction for several decades. It is not until very recently that methods 
capable of effectively reason with equations have been designed and successfully applied to an interesting range 
of challenging problems. These methods are based on the term rewriting approach to equational reasoning, 
which was started in [24]. 

The key idea in term rewriting based theorem proving is to regard a derivation as a process of proof reduction. 
Equations are oriented into rules according to a well-founded ordering, and equational replacement is performed 
only in one direction. When an expression (term, equation, clause) is simplified by a rule, the old expression is 
discarded and replaced by the new one, which is smaller in the ordering. The generation of new lemmas, the 

superposition process, is also done according to the ordering. By keeping every piece of data fully simplified at 
all time, the search space is drastically reduced. - 

Section 2 presents in greater detail the simplification-based theorem proving approach, according to the 
theoretical framework which we have proposed in [S]. Section 3 describes our theorem prover SBR3, which 

implements the simplification-based methodology. Section 4 relates some original proofs obtained automatically 
with SBR3. The last section is devoted to some discussion on our current work on distributed theorem proving. 

'Research supported in part by grants CCR-8805734 and CCR-8901322, funded by the National Science Foundation. The first 

author is also supported by a scholarship of UniversitL dcgli Studi di Milano, Italy. 



2 Simplification-based automated deduction 

A theomm proving problem consists in finding a proof of a given sentence p in a given set of &oms S. The 
set S is a presentation of the theory T h ( S )  of all the theorems of S ,  T h ( S )  = {+ I S + 11). For instance, in 

equational logic, S is a set of equations E, the axioms for an equational theory. The sentence cp to be proved 
is the target or goal. In equational theorem proving, the target is an equation VZS .Y t, where all variables ate 
universally quantified. We write (S; p) to denote the problem of proving rp from S. 

The first component of a theorem proving strategy C is a set I of inference rules. An application of an 
inference rule to (S; y )  transforms it into another problem: (S; p )  FI(S1; PI). Clearly, the two problems must 
be equivalent. This is ensured by requiring that for all inference steps (5; p) Fr(S1; p'), the theory of S' is not 
larger than the theory of S,  i.e. T h ( S t )  C T h ( S ) ,  and Q E T h ( S )  if and only if p1 E T h ( S 1 ) .  We have termed 
these two properties monotonicity and ~elevance respectively. 

An inference mechanism I defmes for every given input (So; po) the space of all the problems or states 
(S; p), which can be derived from (So; P O )  by I in zero or more steps. This space can be represented as a 
tree, where the nodes are labeled by pairs ( S ;  rp), the root is labeled by (So; P O )  and there is an arc from node 
( S ;  q) to node ( S t ;  c p l )  if and only if (S; p )  t r ( S 1 ;  p l ) .  We call this tree the I-tree rooted at (So; v o ) ,  because it is 
determined by the inference mechanism I and the input problem (So; yo ) .  Accordingly, a sequence of inference 
steps ( S ;  cp) FI(S1; 9') is an I-path. In general, the I-tree is a directed graph, rather than a tree, since a node 
( S ;  p) may be reachable starting from the root by more than one I-path. However, it is always possible to 
transform it into a tree by allowing different nodes to have the same label. 

I f  yo is indeed a theorem of So, i.e. cpo f Th(So) ,  the inference mechanism I should be able to prove it. This 
is the intuitive meaning of the refutational completeness of an inference system. Refutational completeness can 
be described on the I-tree as follows: I is refutationally complete if and only if, whenever po E Th(So) ,  the 
I-tree rooted at (So;  po) contains at  least a node labeled by a successful state ( S ;  t rue) ,  i.e. a state where the 
target is proved. 

I€ our theorem proving strategy C has a refutationally 'complete inference mechanism, we know that for 
every true input target, we can find a proof. However, ensuring that the inference rules are sufficiently powerful 
to prove all theorems is just the beginning. We now face the problem of searching the I-tree to reach a solution. 
Thus, the second component of a strategy C is a search plan E: C =< I; E >. Given the input state (So;  y o ) ,  X 
selects an inference rule f in I and a tuple of premises 5 in So u {pol. The f i s t  step consists then in applying 
f to Z, generating a new state (Sl; p l ) .  Choosing an inference step corresponds to choosing one of the arcs 
leaving node (So; po) in the I-tree. The process is repeated, generating a derivation 

(SO; P O )  Fc(Sli P I )  FC - - .  (Si;  c ~ i )  FC - 9  

where at  each step an inference is ~jerformed according to the search plan. The derivation computed by C on 
input (So; po) is the unique I-path selected by E in the I-tree rooted at (SO;  90). A derivation is successful if 
it reaches a successful node (S; true). 

The refutational completeness of I guarantees that successful derivation exist. We need another property 
to ensure that the specific derivation computed by C is successful. This property is the fairness of the search 
plan: E is fair if and only if, whenever the I-tree rooted at (So; po) contains successful nodes, the derivation 
controlled by Z h d s  one. The refutational completeness of the inference rules and the fairness of the search 
plan together imply the completeness of the strategy C: whenever cpo E Th(So) ,  the computation by C halts 



successfully. Ia other words, C is a semidecision proceduw for theorem proving. 

Meeting the completeness requirement alone is not difficult. Many refutationally complete inference systems 
are known and a search plan which tries exhaustively a l l  steps is trivially fair. The more challenging question of 
automated deduction is to obtain a strategy which is both complete and eficienk not only should the strategy 
succeed, but it should also do it by consuming "reasonable" amounts of resources, i.e. time and memory. The 
notion of &ciency is clearly not an absolute one. Rather, it can be used for comparisons. Informally, given 
two complete strategies C1 and C2, a problem (So; po) and a fixed amount of memory (elapse of time), C1 is 
more efficient in time (in memory) than C2 on problem (So; cpo), if it reaches a solution in shorter time (using 
a smaller amount of memory). 

The issue of efficiency can, and in fact should, be considered at both the inference level and the search level. 
At the inference level, the goal is to devise inference mechanisms which generate "small" search spaces, while 
preserving refutational completeness. It  is desirable that the search space is small, since searching a small space 
is intuitively easier than searching a large one, but not at the expense of losing all the solution nodes! Similarly, 
at the search level, the goal is to design search plans which find "fast" solutions, while preserving fairness. 

We attack these problems as follows. We have seen that a theorem proving derivation transforms a theorem 
proving problem into equivalent problems. Intuitively, it is desirable that a problem is reduced to one which 
is in some sense 'Lsmaller". In fact, at the end of a successful derivation we have a solved problem (S; true), 
where the dummy target "true" simply indicates that the original target has been proved. Thus, we need to 
identify what is being reduced during a txeorem proving derivation. We observe that if a target cpo is indeed 
a theorem of the input set So, then there exist some proofs of (oo in So. On the other hand, the proof of the 
dwnmy target "true" is empty. At any stage ( Si; pi) in between there is a (non-unique) minimal proof of cp; in 
Si, which represents the least arnount of work which still needs to be done in order to prove pi from S;. If the 
derivation gets closer to a solution, a minimal proof of the target gets reduced, i.e. the amount of work which 
is left becomes smaller. When the problem is solved, no more work needs to be done. Therefore, we regard 
theorem proving as reduction of a minimal proof of the target to the empty proof. 

In order to compare proofs arid to have a notion of minimal proofs, we need an odering of proofs. Fur- 
thermore, this ordering needs to be well founded, having as bottom element the empty proof. A notion of well 
founded orderings on proofs, called proof orderings, has been introduced in [5,6] and used to prove that Knuth- 
Bendix type completion procedures generate confluent systems of rewrite rules [16]. We use the same notion 
for a different purpose. Given a proof ordering >p, at each stage (S;; pi) of a derivation, we consider the set 
II(S;, pi) of the minimal proofs of (o; in Si, according to the ordering >*. A successful derivation progressively 
reduces a proof in II(Si; pi) to the empty proof. 

This view has several advantages, both theoretical and practical. On the theoretical side, it has allowed us 
to give a coherent mathematical foundation to theorem proving. All concepts in theorem proving are defmed 
and related to each other by using proof orderings and proof reduction with respect to such orderings. For 
instance, the above informal notions of refutational conipleteness and fairness can be formalized in terms of 
proof reduction [8, 91. 

On the practical side, we require that the inference rules are proof-.reducing. As we derive (S;+l; ~ i + ~ )  

from (Si; pi), the set lI(Si, rpi) is replaced by II(Si+l, Clearly, we need to forbid all inference steps 

which would replace a proof P in TI(Si, rpi) by a proof Q in pitl) such that Q >p P. Such steps 
certainly do not help. On the other hand, we cannot impose that at every step a minimal proof of the target 



be reduced. This is impossible, since theorem proving is a process of search and therefore many steps generally 
do not contribute to the ha1 result. We require that for every step (Si; p;) kc(S;+l; (o;+l), every proof P in 
II(Si, pi)  is either preserved, i.e. P is also in II(Si+l, cp;+l), or reduced, i.e. P is replaced by a proof Q in 
TI(Si+l, qi+1) such that & <, P. This condition is still not sufficiently general, since inference steps may not 
affect immediately any minimal proof of the target and still be necessary to prove it eventually. Therefore, we 
need to extend our attention to a larger set of theorems, which we call the domain T of the derivation. A step 

(Si; cpi) l-c(Si+l; such that II(S;, vi) = II(S;+l, v;+~), is also proof-reducing, provided that for all $ in 
T, every minimal proof is either preserved or reduced and for at  least a ~,6 in 7 a minimal proof is reduced. 
Intuitively, we would like the domain T to be as small and as "related" -to the target as possible. In practice, 
for the known simplification-based strategies, the domain is the set of all ground equations. 

2.1 The simplification-based inference engine UKB 

The most significant characteristic of inference rules in simplification-based strategies is that they are proof- 
reducing [S]. As an example, we present in the following the ones which are used in our prover SBR3, an 

automated deduction system for equational theories. Collectively, they form the unfailing Knuth-Bendix 
completion procedure, or UKB for short. UKB is a semi-decision procedure for the validity problem of 
equational theory. 

The most important one is Simplification [28]- itself. I f  we consider a derivation in equational logic, a 

presentation is a set of equations E and a target is an equational theorem VZs .Y t. We write the target as 
d .Y f to denote that it contains only universally quantified variables and therefore can be regarded as a ground 
equality. The definition of simplification involves two orderings. The f i s t  one is a well founded ordering on 
terms k which is used to ensure that simplification replaces an equation by a smaller equation [15]. The second 
one is the encompassment ordering E, which is defined as follows: t k s  if tlu = sa for some position u and 
substitution a, i.e. an instance su of s occurs as a subterm in t. We write t bs if t k s  and either u is not the 
root position or a is not just a renaming of variables [16]. 

Simplification applies to the presentation: 

and to the target: 

( E  u { I  .V r ) ;  i .V i) i J u  = IQ 
( E  u { I  s: r ) ;  ~ [ T u ] ,  E i) i + B[ru],. 

Intuitively, a simplification step replaces an equation by a smaller equation and therefore it reduces all the 
proofs where the replaced equation occurred. 

The second basic inference rule, a deductive inference rule called Superposition [21], is also proof-reducing: 

where X is the set of variables and a is the most general unifier of ( p ( u )  and 1 .  The key point is that the step 
is performed only if pa $ qa and pa 2 p[r],a. This conditions guarantee that the rule is proof-reducing. 

An operator f is said to satisfy the right cancellation law if for every x, y, z, f(x,  r )  = f (y, z )  implies x = y. 
The left cancellation law is defmed symmetrically. Cancellation laws can be incorporated as inference rules, 



which may reduce considerably the size of the equations. We present two such inference rules here. A complete 
List can be found in [22]. 

Cancellation 2: 

( E  u {f(dl, d z )  2 y); i .Y Y € V ( 4 )  ff = {Y f(f ,  d2))  
(E U {f(dl, d2)  2 y, dl@ -- 2); 4 II t* )  y $ V ( d z )  x is a new variaMe 

Cancellation 4: 

( E  u {f(p, u) 2 f(q, u)); i z i) 
( E u  { p z  q ) ; 3  - i) 

where the function f is right cancellable. In Cancellation 2, if the substitution a = {y I+ f (z, dn)) is applied 
to the given equation, it becomes f (dlu, dz) - f (x, dz ) ,  since y does not occur in da. The cancellation law 
reduces this equation to d l a  II x .  Cancellation 4 is not necessary for the purpose of completeness, but it helps 
in improving efficiency. 

Simplification-based strategies also feature rules such as Functional subsumption, 

which delete equations subsumed by other equations, and Deletion 

which delete trivial equations. These rules do not reduce any minimal proofs, but they delete equations, which 
are redundant, in the sense that they do not contribute to any minimal proofs and therefore are not needed in 
the derivation. Deletion also applies to the target 

in order to detect that the target is proved. 

Another inference on the target is superposition of an un-orientable equation onto a target equality i ru i 
to generate a new target equality. A newly generated target equality is first simplified as much as possible and 
then it is kept only if it is smaller than i - i. This rule is called Ordered saturat ion [I]: 

( E U { Z E T } ; N U { ~ ~ ~ ) )  ilu = 1u 6[ra],  -tk 3' i! -t; i!' 

( E  u ( 1  E T ) ;  N U {i 2 i, i' z i t ) )  {it, it} -?&{3, i) 
Ordewd saturation applies if i 4 ~[Tu],, since if i % i[ru], holds, simplification would apply. The target 
equality i' z I!' might have a shorter proof than the other target equalities. Ordered saturation allows us to 
generate more than one target in order to broaden our chance of reaching the proof as soon as possible. 

Rules such as simplification, subsumption and deletion are called contraction inference rules, because they 
delete equations or replace them by smaller equations. Rules like superposition and ordered statmation instead 
are expansion inference rule, because they generates new equations and add them to E or to the target. Roughly 
speaking, a step which deletes a sentence also deletes the portion of the search space which depends on that 
sentence, i.e. all the inferences which could be applied to that sentence. On the contrary, an expansion step 
expands the data base and'therefore the search space. It follows that in order to keep the size of the search 
space manageable, it is desirable to apply as much as possible the contraction rules and to restrict as much 



as possible the application of the expansion rules. This is in fact the philosophy of the simplification-based 
strategies. First of all, these strategies adopt simplification-first search plans [21], i.e. search plans which 
give priority to contraction inference rules. Under such search plans, expansion rules are applied only if no 
contraction rule applies. Consequently, the current set of equations and therefore the current search space 
is always kept as reduced as possible. Secondly, simplification-based strategies impose strong ordering based 
restrictions on the expansion rules, such as those embedded in the definitions of superposition and ordered 
saturation. Such restrictions make the inference rules proof-reducing and limit their applicability, thereby 
reducing their capability of expanding the search space. These choices have turned out to be very successful 
in practice, up to the point of bringing within reach unsolved challenge problems, as described in the following 
section. 

3 Putting theory into practice 

We have developed a family of theorem provers for equational theories whose design strictly adheres to the 
aforementioned methodology. The latest versions is SBR3, written in CLU and runs on Sun3. A new version 
in C++, SBR4, with the same functionalities is being developed. SBR4 runs on any machines that supports 
C++, and is much faster than SBR3. On the problems which we have tested on both SBR3 and SBR4 (the 
latter on a Sparcstation), the latter is usually at least ten times faster. 

SBR3 takes as inputs an equational theory E and an equation s e t and tries to prove that s .v t is a 
theorem of E. It proves a theorem the refutational way. That is, it replaces all variables in s zt t by new Skolem 
constants and tries to find a contradiction to E U { i  # i)) where i and i! are the skolemiaation of s and t. Then 
the prover will try to deduce an instance of x # z which yields the contradiction. 

In addition to  the theory and the equation, the user should also provide an ordering for comparing the 
terms. Usually the ordering should be a complete simplification ordering (a  simplification ordering which is 
total on ground terms). In SBR3 the user has the choice of assigning a precedence among the operators in 
the theory and choose an ordering from a list implemented in the system. However, SBR3 will not check 
the totality for the user. The lack of totality on ground terms may actually be turned into a powerful search 
strategy similar to .  Ordewd Saturation described in the previous section. 

The backbone of SBR3 is a variation of unfailing Knuth-Bendix completion, mentioned in the previous 
section, which also incorporates the commutative and associative (AC) axioms of an operator into the unification 
algorithm. We term this procedure AC-UKB. Although the AC axioms can be handled simply as equations, it 
is advantageous to treat them implicitly in the unification process to the number of unnecessary Superposition 
inferences. 

What differ SBR3 from the other provers, in addition to the simplification-based inference system, are 
its simple yet extremely powerful search plans. Search plans are usually treated in theorem proving in an ad 
hoe and incomplete way - anything that produces proofs is allowed. Fairness (thus completeness of the proof 
strategy) is usually compromised by the concern for greater efficiency. Using the notion of proof reduction, 
we have demonstrated that it is possible to achieve both completeness (fairness of the search plan) as well 
as efficiency. In SBR3, only fair search plans are implemented. Our experiments showed that they, if done 
properly, can indeed be both complete and very efficient. 

The most important design choice common to all the search plans in SBR3 is that they are simplification- 



first plans. That is, no superposition step is ever performed if there a;re still simplification steps and functional 
subsumption steps to be done. This search plan, coupled with cancellation, controls the growth of the number 
and size of equations sufficiently enough to obtain proofs for simple to moderately difficult problems. For more 
difficult problems, however, the search space quickly grows to an unmanageable size. 

The first question we tackle is one of finding a shorter path to a solution. UKB, being complete, guarantees 
the existence of a proof through simplification and superposition should there be one. It does not, however, 
guarantee to provide a short proof. Suppose the prover can look at several different inequalities and tries to 
h d  a contradiction simultaneously1, then conceivably one can ftnd a proof faster. On the other hand, one 

should also keep in mind not to inundate the search space with irrelevant inequalities. 

SBR3 provides a facility for maintaining a reasonable number of inequalities, to check for shorter proofs, 
by modifying the ordered saturation rule. When an un-orientable equation is generated, we superimpose it into 
an existing inequality (say A) to create a new inequality if possible. Then the new inequality is simplified using 
the rest of the equations and rules into B. The inequality B is kept, without deleting A,-if A $ B according 
to the ordering. We term this method the inequality ordered-saturntion stmtegy. This strategy is indispensable 
for proving some of the more diEcult problems which we experimented [I]. 

Another challenge is to eliminate redundant criticd pairs. This problem is especially serious in AC-rewriting 
due to the potentially astronomical number of AC-unifiers. In the term rewriting literature there are a handful 
of critical pair criteria, whose purpose is to eliminate unnecessary critical pairs. However, all of them are 
designed not to destroy the confluence property of any given two terms. la refutational theorem proving, on 
the other hand, we are only interested in the coduence of the two terms of the targeted theorem. Therefore a 

critical pair can be deleted or suspended as long as it does not destroy the confluence of the intended terms. 

Taking advantage of this property, we employed a notion of measure in SBR3. A measure is defined 
syntactically on the structure of terms: for example, the number of occurrences of a specific operator may be a 
measure. The measure est.irnates the likelihood of whether a critical pair may contribute to an eventual proof of 
the intended theorem. Critical pairs are ordered according to the measure which decides the next equation to 
be chosen to perform superposition. Certain measures even allow us to delete critical pairs if they are deemed 
irrelevant for producing a proof. This search strategy is called filtration-sorted strategy and its details can be 
found in [2]. Three different types of measure are implemented in SBR3. 

4 Experimental results: automatic proofs by SBR3 

We have conducted extensive experiments on SBR3. We tested the prover on all the examples in equational 
theorem proving which we could fmd, as well as some new ones. The e.qeriments we performed showed a 
dramatically small search space, just as expected. As a simple example, for the well-known Salt and Mustard 
puzzle of Lewis Carroll, f i s t  suggested by the Argome Theorem Proving Group as a challenge problem for 
theorem provers, the Argonne prover Otter [25] generated more than 32,000 clauses before finding the solution 
while ours succeeded after generating less than 2000 rewrite rules. 

The performance of SBR3 on serious mathematical problems is even more impressive. The celebrated 
Jacobson's Theorem of ring theory for n = 3 [31], the independence of ternary algebra axioms [27], etc., have 
all been proved in a few minutes. In the following we describe some of the problems for which SBR3 provided 

'The basic UKB only looks at one. 
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the first computer proofs. 

Classical Regular Languages 

In [14], there is an equational formulation of classical regular languages by Yanov (page 108 of [14]) which 
completely axiomatize regular languages containing the empty string. The axioms are: 

where "." is concatenation. SBR3 proved that 

where = Al + - .  . + + A;+l + - - + A,, for n = 3 and n = 4, and the languages contain the empty 
strings2. h [14], Conway used an entire chapter to introduce a new technique to prove these two problems and 
remarked (page 119) that ". . . even for n = 3 it is dificult to produce a proof without using the general ideas of 
this chapter, and for n = 4 I doubt if a completely written out proof could be fitted into 10 pages7'. The direct 
proof, produced by SBR3, needs no more than five new critical pairs, in addition to the simplication steps! 
The cpu time needed for n = 3 is about 4 minutes and 42 minutes for n = 4. 

Dependency of Lukasiewicz's fifth axiom 

Lukasiewicz's many-valued logic is defmed using the following four axioms: 

true + x == x 

(2: j y) * ((y * 2) j ( x  =$ 2)) == i!rue 

2The equations are not true in classical regular algebra when n 2 5 .  
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(z * y) * y  == (y =. 2) * x 

(not(x) + not(y)) * (y z) == true. 

The problem is whether the fifth axiom x  + y V y + x == true is necessary [17]. The conjecture of its 
dependency was given by Lukasiewicz in the 20's, as reported in [32], and proved many years later [13, 261. 

The proof by SBR3 is done by first deriving a few lemmas from the axioms, one of which leads to the 
definition of an additional operator or. Then SBR3 proves that or is AC. Finally, the conjecture is proved in 
about 2 minutes. For the ha1 session, the inputs are 

true + x == 2 

x a x == true 

x + true == true 

(Z  + y) * ((y + 2) + (x 3 z)) == true 

not(not(z)) == x 

(x G- y) * y == (y * x) + x 

m(not(x), y) -= x + y. 

z v y = = ( x * y ) * y  

Declared AC-operator: w. 

Theorem proved: x + y v y * x -= true. 

A detailed description of the experiments in Lukasiewicz logic can be found in [3, 4, 101. 

Moufang identities in alternative rings 

Alternative rings are rings with the associativity of * replaced by two alternative axioms. The Moufang 
identities are a set of equational theorems of alternative rings. The Moufang identities as a challenge to 
theorem provers was f i s t  suggested in [30], although no automated proof was given. They were later proved 
automatically using a special-purpose theorem prover designed for ring theory [35]. SBR3 is the f i s t  syntactic 
theorem prover which proved them automatically. 

Alternative rings are defined by 

O + x = = x  



where a is an auxiliary operator. 

SBR3 proved the following properties (the middle alternative law and two skew-symmetries of a) within 20 

seconds: 

The Moufang identities are defined as: 

(((z * y) * x) * 2) = ( x  * (y * ( x  * 2 ) ) )  (left Moufang) 

( ( ( z  * x )  * y) * x )  = (t * (x * (y * 2))) (right Moufang) 

( ( x  * y) * ( z  * x ) )  = ( ( x  * (y * z ) )  * x )  (middle Moufang) 

and they are proved in 49, 55, and 41 minutes respectively. 

By adding the left and right Moufang into the input set, we are able to give a direct proof of 

in 13 minutes. A full account of our experiments in alternative rings is given in [I]. 

Another series of problems which we are working on now is to verify the theorems of the book A Formal- 
ization of Set Theory without Variables by Tarski and Givant.. As pointed out in [ll], this will have direct 
implication on the design and optimization of query languages in relational data bases and program synthesis. 

Our experiments are encouraging. They show us that high performance automated deduction is feasible even 
with our current knowledge and technology. We believe that the philosophy of simplification underlying our 
prover is the most significant reason for the dramatic reduction of search space, which made all our automatic 
proofs possible. 

5 Distributed theorem proving 

We are currently working on the design of a simplification-based strategy for parallel automated deduction in a di- 
stributed multi-processing environment. We feel that simplification-based theorem proving is an ideal candidate 
for application of parallel computation, because the rewriting approach couples a strong and elegant theoretical 
foundation with an extremely encouraging experimental record. A deep understanding of the problem at hand 
is necessary to design an,architecture that exploits successfully the increased computing power of a parallel 



environment. It would also open a new perspective of application for parallel computation which has not been 
investigated before. 

Relatively little work has been done in this area so far. Pardelizing a simplification-based strategy is 
significantly different &om paralleliring a conventional, space consuming theorem proving strategy. The latter 
uses mostly expansion inferences and it is relatively easy to perform expansion steps in parallel, because 
expansion steps are more or less independent from each other. More precisely, any two inference steps which 
do not have premises in common are trivially independent and can proceed concurrently, at  least in principle. 
For expansion inferences, two steps which share one or mote premises are also independent, because expansion 
steps do not modify their premises. Expansion steps simply need to be granted =ad-access to their premises. 
Since concurrent read can be safely admitted, the parallelization of expansion inferences does not raise basic 
conceptual problems. In a simplification-based strategy, however, inference rules are intertwined. The reason 
is that contraction inferences do modify their premises. A contraction step needs not just read-access, but also 
wkte-access to its premises. Therefore, two contraction steps wbich share premises may cause a write-write 
conflict if they attempt to modify concurrently the same data. Also, contraction steps may have read-write 
conflicts with concurrent expansion steps. 

Even this very basic analysis of the problem shows that the presence of contraction rules makes the design 
of a parallel strategy harder. However, we think that the gain is well worth the additional effort. Firstly, there 
is ample empirical evidence that sequential strategies with contraction rules are much more powerful than those 
without contraction. This behaviour is also justified theoretically by our proof reduction view. Based on this, 
it is reasonable to foresee that the same pattern of behaviour will appear when comparing parallel strategies. 
In fact, we expect an even much better improvement. By grossly simplifying the problem, let Co be a sequential 
strategy without contraction rules and let t be the time spent by Co to prove a given input (S; y). Let C1 be 
the sequential strategy obtained by adding contraction to Co and let t/s, for some s > 1, be the time required 
by C1 on (S; rp). Furthermore, let Cz and C3 be respectively a parallel version of Co and a-parallel version of CI. 
We expect that if C2 takes time t ln, n > 1, to prove p, C3 will take time t / p ,  where p > n - s. In other words, 
we expect the speedup of a parallel simplification-based strategy to be much higher than the mere combination 
of the speedup induced by simplification and the speedup induced by parallelism. This may not be true for 
all inputs, but we expect it to hold for most targets. The intuitive reason for our expectation is the following. 
Roughly speaking, if we execute in parallel an expansion-only strategy, we will be able to perform expansion 
steps by batches rather than one by one. The equations will be generated faster and the derivation will succeed 
at an earlier stage than the sequential one. However, the solution obtained is in some sense the same, as the 
same equations are generated. On the other hand, if we execute in parallel a simplification-based strategy, 
powerful simplifiers may be generated much sooner than in the sequential derivation. In a simplification-fist 
strategy, the early application of such simplifiers may trigger the early generation of other simplifiers and an 
eventual radical modifications of the data base, leading the prover to find a different and much faster successful 
path than the one found by the sequential execution. 

Problems related to those of parallel deduction have been addressed by the study of parallel and distributed 
implementations of the Buchbeqer algorithm [34, 29, 181. The Buchberger algorithm works on polynomials, 
equated to 0 and treated as oriented equations. It takes as input a set of polynomials and gives as output a basis 

for the ideal generated by the input polynomids. The basis has the property that it reduces to 0 all and only 
the polynomials belonging to the ideal [12]. The Buchberger algorithm is related to the simplification-based 
strategies because it features an expansion inference rule which is similar to superposition and a contraction 



rule which is similar to simplification. There are also substantial differences, because the Buchberger algorithm 
has a much less general purpose than a theorem proving strategy. The Buchberger algorithm is an algorithm, 
whereas the theorem proving strategies are semidecision procedures. Its inferences do not use unification, since 
there are no variables, as the "variables" in the polynomials are  constants logically. It follows that expansion 
steps are much less expensive than in theorem proving. Also, the equations are all trivially oriented h t o  rewrite 
rules, because they are obtained by equating polynomials to 0. Nonetheless, parallel implementations of the 
Buchberger algorithm need to deal with the problem of the coexistence of expansion and contraction inferences. 
The three approaches presented in [34, 29, 181 address the problem within three different models of parde l  
computation: a shared memory multi-processor in [34], a data-flow machine in [29] and a distributed memory 
multi-processor in [18]. All three algorithms have interesting features. However, none of them implements a 
simplification-fist methodology. In fact, the data base of polynomials is not maintained fully simplified by any 
of these three implementations. In particular, very little backward contraction, i.e. simplification of formerly 
existing equations by newly generated ones, is performed. As a consequence, expansion rules- are applied 
to equations which are not fully reduced, unnecessary equations are generated and the search space swells. 
It seems that this phenomenon has prevented these three implementations from achieving better speedups. 
The trouble is that requiring equations to be fully simplified, before they are allowed to expand, introduces 
some sequentialit y. An expansion process cannot be granted read-access to an equation uatil all simplification 
processes have had write-access to it. We have then two at least par t idy  conflicting desiderata: on one hand, 
we would like to simplify as much as possible before expanding, while in the meantime we would like to perform 
as many steps in parallel as possible. The problem is to find a satisfactory trade-off between these two. 

We have kept this issue in mind since the early stages of our project. So far, we have settled on a few 
basic choices. The fist one is coarse gmin versus fine gmin parallelism or, equivalently, coarse granularity of 
protection versus fine gmnularity of protection. For the purpose of this discussion, we regard as fine granularity 
the term level and as coarse granularity the equation (or clause) level. Thus, fine granularity means that every 
term is a grain of memory with its own access rights. Fine granularity allows parallel processes to access 
different subterms of the same term. Parallel matching, parallel rewriting and parallel unification are examples 
of h e  grain pardelism. On the other hand, coarse granularity means that if a process is granted access to 
an equation, no other process can access any part of it. Fine grain parallelism is well suited for equational 
programs, where just one term needs to be reduced by a static set of equations. In theorem proving we have 
a dynamic set of equations where every single term is subject to simplification. It  seems to us that under 
these conditions the overhead of handling h e  granularity would be unreasonably high. Therefore, we choose 
to concentrate ourselves on coarse grain parallelism, although some fine grain parallelism might be considered 
at a later stage. 

The second basic choice is shared memory versus distributed memory. This choice is related to the previous 
one. Fine grain parallelism leads in general to adopt a shared memory, since it does not seem realistic to scatter 
the terms of an equation over a distributed memory. Coarse grain parallelism can be implemented in principle 
in both a shared memory and a distributed memory. However, we are oriented toward distributed memory, for 
the following reasons. Theorem proving is basically search for solutions in a generally huge search space. We 
expect parallelism to help in two ways: by keeping the search space small by eager, parallel simplification and 
by searching it in parallel along different paths. In order to realize this intuitive idea of parallel search, we need 
the parallel processes to be rather independent. Thus, the processors should be rather loosely coupled, with no 
shared memory. We envision a situation where each processor has in its own memory a set of equations si and 



the union of all the si's form the current ,data base S, The Si's are initially disjoint, but in general they do 
not remain disjoint during the derivation. Also, each processor is originally given a copy of the input target pb. 
Since different processors perform different steps, 9 0  may be reduced to different, yet equivalent targets, one 
per processor. Each processor perform its own inference steps searching for a proof. However, the processors 
do communicate by broadcasting their equations to all the other processors. When receiving equations from 
the outside, a processor uses them to perform inferences with its own equations. The simplification-first 
methodology is strictly enforced at the local level. Each processor maintains its own data base fully reduced, 
including the equations received as messages. No expansion step is performed if the equations involved are 
not fully reduced, at least locally. Clearly, they are not guaranteed to be reduced with respect to the global 
data base. However, our strategy is fair in the sense that it guarantees that any two equations generated at 
remote sites will be able to interact through messages, if they are not simplified locally beforehand. The cost of 
handling such messages is the price to pay for the high degree of independence of the processors. In addition, 
this scheme induces a certain amount of redundancy, as the data bases at Merent sites are not guaranteed to 
be disjoint and therefore it may happen that a same step is executed by more than one processor. 

This is just a very brief sketch of a few basic ideas in our work. We are currently studying the details, trying 
to minimize redundancy and the cost of message passing. Based on the investigations conducted so far and on 
the observation that the implementations in [34, 29, 181 obtained significant speedups even in the absence of 
full simplification, we expect that this on going research will ultimately increase the speed of a theorem prover 
like SbReve by at least a hundred times. 
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Abstract. Program efficiency and program correctness are often conflicting aims. The efficient program 
may be unreadable and the well structured, obviously correct program may have unnecessary steps. 

We offer an a p p r d  for attaining both comectneaa and efficiency. Our solution includes a binary rewriting 
language based on Taraki and Givant's system of relation combinators. In this language smaller, correct pr* 
grw can be atraightforwdy combined to give larger programs. Programs can often be proved semantically 
equivalent using the equations of relation algebras, to give a reliable optimization method. 

We illustrate the expressiveness of thi. system by applying it to a simplified version of the stable marriages 
problem. We also illustrate a natural application of non-monotonic logic in which a program query accepts a 
database as a parameter, ~ 0 I I s t ~ c t e d  from a complex expression. 

This is a new style of pmgram construction based on a traditional, mathexmtical notation. 

1. Introduction. Advances in the theory of programming languages and program cor- 
rectnw in recent years have been impressive. They have given a major boost to program 
reliability by providing clear, high-level tools for program development that stress modularity 
and increasingly transparent connections between programs and their specifications. The work 
has already resulted in dramatic declines in software development time -the costliest factor 
in computing- and in the undertaking of projects orders of magnitude larger than those one 
could have conceived of a few decades ago. 

Several key paradigms have emerged in this work: 

Strongly typed programming languages provide an expressive type discipline 
to promote modularity, clarity in the definition of data, and a certain degree of 
compile-time error checking. Type-safe programs may, however, be incorrect: 
moat type disciplines are not expressive enough to be a specification language. 

On the other hand, declarative programs, in their purest form, come very 
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close to the goal of programming directly with ezecutoble specifications. These 
so-called logic programming languages (e.g., Prolog) are ideally suited to 
symbolic computation, and have been very successful in expert systems, 
databases, and other sophisticated applications. Sometimes, however, pre- 
cisely because of the distancing from implementation encouraged by such 
languages, there is considerable loss of efficiency. 

Functional Programming languages provide some benefits of both imperative 
and declarative languages. They are more algorithmic in spirit, equally suited 
to symbolic computation, and definition-based, in a clear and modular way. 
Some even provide a type-free language for the programmer, with automatic 
type inference at compile time (ML). 

Relational programming, because of its compositional nature, extends functional pro- 
gramming in a natural way. But it shares the reversibility, non-deterministic robustness, and 
declarative nature of logic programming: relations are assertions. 

Correctness and Eficiency. In high level language programming, clarity and ease of soft- 
ware development are a principal benefit, sometimes at the expense of efficiency. This has 
tended to place a burden on compilation as an optimizing process. Work in optimization has 
tended to be too low-level, almost independent of the transparency considerations above. It 
remains a significant problem to integrate this work with any of the programming concepts 
aimed at enforcing correctnesa. 

The logic of binary relations is an attractive formalism for addressing both correctness 
and efficiency issues. The Relation Algebras of Tarski and Givant permit a variable-free, 
combinatory formalization of set theory that can specify input/output relations in a compu- 
tationally useful, declarative way. Work discussed below and in related papers suggests that 
operations on proper binary relations between terms permits both a declarative database style 
of programming and a concise compilation technique for logic programs. 

The formalism rests upon a well-developed algebraic theory. It ia therefore well suited 
to the development of verifiably correct code and correctness proofs. Yet it lends itself to 
efficient program transformation techniques that constitute one of the more promising vehicles 
for high level optimization. Its elementary axiomatization and variable-free nature make it an 
interesting candidate for symbolic computation and metalogical programming. 

High level optimization is addressed in this framework by introducing an inherently rela- 
tional combinator to describe single linear recursions. New equations about this combinator 
supplement those of relation algebras and Q-relation algebras. These equations provide rules 
for collapaing loops and propagating constraints. Thus efficiency, which has often been an 
issue seemingly independent of correctness considerations, turns out to be closely related to, 
and justified by, correctness arguments. 

Several new directions of research have issued from the development of this relational 
programming paradigm. The computational analysis of relations provides a framework for 
typing logic and constraint logic programs in a way that suggests conventional Curry-Howard 
style typing of functional programming. This points to a logically sound way of combining 
declarative and functional code, bringing together the benefits of both paradigms. 

Our objectives are to illustrate the expressiveness of a small collection of operations on 
proper binary relations. This collection comprises a declarative discipline that subsumes 
functional programming and database operations. We also illustrate their relevance to non- 
monotonic reasoning. These operations are based on the calculus offered in [Tarski] and are 
particularly important for correctness and efficiency concerns. The set theoretic equivalents 
are representatives of an algebraic structure called a relation algebra that can be used for high 
level optimization and program synthesis by heuristic rewriting[Broome]. 

2. Equational systems. The set theoretic representation of basic operations of a rela- 
tional language are the following. 



sum(union) 

product(intersection) 

relative product(composition) 

converse 

complement 

identity 

relation equality 

left projection 

right projection 

atomic binary predicates 

F + G ~ ( x , ~ ~ x F  ~ V X G  y), 

F*G={x ,y ( rF  y A x G  y}, 

F;G G (2, y(3z(z F z A z G y)), 

converse(F) z {xi yly F x } ,  
complement(f) { x ,  yl-x F y), 

id G { x ,  ylz = y), 

R = S  C=J (Vzy,xRg*z s y), 

hd = (2, ~132,  x = [YIZII, 

tr = { x ,  ~ 1 3 % ~  x = [JIYII, 
F1,F2,.-.,Fn. 

Except for recursion, the language consists of program forming operations suggested by 
these definitions. Domain and range objects are terms. Program inputs and outputs are 
described in the theory of ordered pairs over the free algebra of terms in finitely many constants 
and function symbols. Relation equality formalizes a notion of program equivalence. 

3. Syntax. A program is a sequence of definitions and queries. The fundamental con- 
cepts that distinguish this system are relational expressions and set formulas. Solutions to 
queries are sets finitely described by constraints. That is, interpretation is a search for a 
representation of a relation as a certain canonical formula defining a set of pairs of terms. 

We describe the language in Backus-Naur form. 

< program> : : = < definition> ... < definition> I solve < relation> . 
< definition> : : = define < relation name> => < relation> . 
< relation name> : := < constant> I < constant>(< variable>, ..., < variable>) 
< constant> : := < a string beginning with a lower case letter> 
< variable> ; ; = < a string beginning with an upper case letter> 

<relation> : := id I hd I tl 
. . .- . - < relation> + < relation> 
: : = < relation> * < relation> 
' .- . . - < relation> ; < relation> 
: : = converse(< relation> ) 
: : = complement (< relation> ) 
: : = plus(< relation> ) 
: : = pi(< relation> ,< relation> ,< relation> ) 
: : = < constant> I < cqnstanl>(< relation> ,..., < relation>) 
: : = { < term> ; < term> ,..., < term> ; < term>} 

The projections hd and tl are special cases of a more general n-ary projection denoted 
p'i/j . This is to be understood as a binary relation between a term and a subterm. The 
term has function symbol p with i arguments; the subterm is the jth argument of the term. 

Definitions permit variables but queries do not. The relation expressions in a define 
<relation name> and <relation> permit variables for relations whereas the expression after 
solve must not have relation variables. Some examples of definitions are the diversity relation, 
the universal relation, and a sample, one element, ground telation defined as follows. 



define di => complement(id). 
define 1 => id + di. 
define bits => (0;l) .  

Solutions are described with two free variables X and Y and possibly other universally 
or existentially quantified variable. Values for variables are terms. A term is a constant, a 
variable, or a function symbol with arguments that are terms. A function symbol is also a 
constant. A variable begins with an upper case letter. A constant with a lower case letter. 

All variables other than X and Y are either existentially quantified on the outside or locally 
universally quantified. Complements of projections introduce universally quantified variables. 
For example, the existentially quantified variable Z in the definition of hd becomes universally 
quantified when complemented. Universally quantified variables are denoted by their enclosure 
in parentheses. In particular, complement(hd) is the set of X ; Y  such that for every X2, X is 
dserent from the pair CY I X21. This is expressed as 

Two illustrative examples are the solutions to both b i t s  and complement(bita). The fol- 
lowing interaction shows these solutions. 

solve bits. 

bits = {X;Y: X=0 ' Y=l}. 

solve complement (bits). 

Set formulas are defined as follows. 

< set formula> : : = {X;Y : < logical expression> } 
< logical expression> : : = true I X = Y I (X # Y) I < disjunction> 
< disjunction> : := < disjunct> v ... v < disjunct> 
< disjunct> : := < conjunct> ... ' < conjunct> 
< conjunct> : : = < variable> = < term> I < quantifiers>< variable> # < term> 
< quantifiers> : := {(< variable>)} 

We illustrate with definitions that can be viewed as constructions of complex data types. 
These are called half product and the traditional cattesian product functor which we call a 
cross product. 

define [RI S] => (R; converse(hd))*(S; converse(t1)). 
define A#B => (hd;A; converse(hd))*(tl; B; converae(t1) 1. 

Both R and S share domain objects in the half product. The range object is a pair; its first 
component is constructed with R and the second with S. For example, we have the following 
interaction: 



[{a; b) 1 (a; c)] ={x; Y : X=aAY= Cb l cl ) . 

solve {a; b)#{a; c )  . 

{a;b}#{a;c)={X;Y: ~=[alal~Y=Cblcl). 

4. Recursion. The primitive recursion operator, pi, is a schema for the divide and con- 
quer paradigm that builds relations between terms. This recursor is defined as the following. 

define pi(D,S,c) => S + D;(id#pi(D,S,C));C. 

Either the terms are related with S or else they are more highly structured. In the second 
case the domain object is divisible by a relation D into a pair. In addition, the range object 
can be constructed from a pair by a relation C. The first components of these pairs must be 
identical; the second components are related by pi (D , S , C) . There are several advantages to 
this recurser; a major one is that it satisfies equations for cooperative loop merging and the 
propa.gatian of constraints [Broome]. Transitive closure and maplist can be defined with pi. 

define plus(R) => pi(R;converse(tl),R,tl). 
define maplist(R) => pi(id,null,R#id). 
def ine  null => { [  1; [ I ) .  

.- As an example, consider the relation maplistcid) . It is the (infinite) set of pairs of 
identical lists, but it has a finite description and contains the relation n u l l .  'I'lle relation 
maplist ( id )  would be described as 

rnaplist (id) = {X; Y: X pi (id ,null, id#id) Y ) .  

The query solve maplist (id) *null involves delaying the solut,ion of maplist  ( i d ) ,  solving 
n u l l ,  then solving t.he intersection to give 

maplist (id) *null = {x;Y: X= [ I ' Y= [ 1) 

5. Iuterpretation. Interpretation is a search for a representation as a set formula. Any 
recursion free relational expression in t,he free term algebra is logically equivalent to x two 
quantifier, rlormal set formula as defined in the BNF syntax[CLPCR]. The argument makes 
use of quantifier elimination and other properties of term algebras 'The form includes a lim- 
ited use of quantifiers. Every variable not explicitly universally quantified in an disequation is 
understood to be existentially quantified. Given an arbitrary relational expression, each rela- 
tion is successively expanded into equations and disequations and simplified into disjunctive 
normal form. In particular, the sum of two relations is effectively the disjunction of their two 
set expressions. T w o  relations are composed by unifying the range objects in the first relation 
with domain objects in the second and normalizing. A solution for converse(R) is simply an 
exchange of the variables X and Y in the solution of R .  

An implementation technique for complementing a set of equations and disequations in 
disjunctive normal form has been described in [Chan] and further expanded in [Mayer, Plaza]. 
The algorithm normalizes the expression again into a disjunction of conjuncts. The simplifi- 
cation phase also simplifies to t r u e  any obviously valid or irrelevant equations or disequations 
in a conj~rrtction and retnoves any conjunction that contains an unsatisfiable equation or dise- 
quation. For any finitely described set, R, two iterations of this algorithm gives an equivalent, 



set expression. That is, for finitely described sets, the set theoretic equation = R is satisfied 
operationally; complement (complement (R) ) is equivalent to R. However, this equation will 
not necessarily be satisfied for expressions R that contain certain occurrences of recursion. 

We can illustrate interpretation with a predicate that insists that its argument (a sequence) 
has no duplicates. This predicate makes use of a s e l e c t  relation that chooses one element 
of an arbitrary length sequence. The relation d i f f e r e n t  is a specialized identity relation on 
sequences. Only sequences without duplicate elements are acceptable. 

def ine  s e l e c t  => pi(id,hd, tl) . 
define different => p i ( i d ,  id#null, Chd*(tl; complement(se1ect) l tll) . 

6. Matching Problems. The stable marriages problem[SMP, MNR] ia the generic ver- 
sion of a wide range of matching problems that generally includes assigning resources to tasks 
with the additional constraint that the resource be appropriate for the task. Sample ap- 
plications may include assignments such as targets to weapons, residents to hospitals, and 
employees to jobs. 

The stable marriages problem is the following: Given two sequences B and G of boys and 
girls and a binary relation K (knows) between names of boys and names of girls. A complete 
matching marries each boy to one and only one girl. The boy and girl must be members of K 
(i.e., they know each other). Let m(B ,K, G) be the set of all complete matchings. That is, each 
member of m(B , K ,  G) is a oneto-one function defined from B-G. The problem is male-biased 
in that every boy, but not every girl, must be matched. 

A solution is a set of oneto-one functions. There are a number of ways of representing a 
sne-bone function. The usual is a binary relation with no duplicate domain or range objects. 
This system cannot represent sets of sets at  top level. It can, although, encode a function by 
use of indices and sequences. Thus a suitable representation of a one-bone function is as a 
single pair of sequences, of the same size, with no duplicates in each sequence. Our set of all 
solutions, m(B .K,G), uses the second representation, as a set of pairs of sequences. 

An example problem uses the specific binary relations b ,k ,g representing an indexed set 
of boys, a knows relation, and an indexed set of girls. The sets b and g are automatically 
indexed with the integers. Thus {bl ,b2 ,b3) is indexed with the elements 1 ,2 ,3  to form the 
binary relation {I ; bi , 2; b2, 3; b3). 

define b => {bl ,b2.b3}. 
def ine  k => {bi;gi,bi;g2,b2;gl,b2;g2,b2;g3,b3;g3,b3;g4]. 
define g => {gi . g2, g3, g4). 

In this example the answer is represented as six 1-1 functions. 

solve rn(b,k,g). 
m(b,k,g)={X;~: 

x=Cb3,b2.bi] ' Y=[g3,glag23 
v ~=[b3,b2,bi] ' Y=Cg3,g2,gll 
V X=[b3,bZ,bi] ^ Y=[g4,giDg21 
v X=,[b3, b2, bi] ' Y= [g4, g2, gl] 
V X=[b3,b2,bll ^ Y=Lg4,g3,gll 
V ~=tb3,b2,bll ' ~=Cg4,g3,g21}~ 

The overall strategy for solving the stable marriage is to first form a matching 
of all of B to  some of G insisting that there are no duplicates among the G's, then to constrain 
this set to corresponding B , G pairs that are members of K. This is described as the intersectio,n 
of two sets. The first is a set of unique matcliings of boys to girls; the second insists that 



maplist (K) hold for each pair in each matching. 

define m ( ~  ,KeG) => unique(B ,G)*maplist(~) . 
The construction of the unique matching, ignoring the K relation, involves forming arbi- 

trary pairs, then insisting there are no duplicates. That is, while the matching is unique it 
may still include couples that are unknown to each other. Assume that pairs(B,G) can be 
defined to construct arbitrary sequences of girls of the same size as a given sequence of boys. 
If we can be provided with a unique sequence of boys then we only need to check that no girl 
is listed twice. Define unique(0, G) with the following. 

define uaique(B,G) => pairs(B,G) ;different. 

7. Data Representations. We will briefly address issues in data representation. A 
common difficulty with most data reprantations is that numeric and symbolic data are 
typically kept separate; databases are often queried with a complex interface from a procedural 
programming language. This is a major source of complexity in program construction and the 
cause of error-prone programming. 

The most powerful aspect of this notation as a database query language is that it is also 
a programming language. Both symbolic data and computations on them agreeably merge. 
In addition, changes of representation are easily performed. 

In the stable marriages problem, a sequence of boys B is a one-to-one function. As de- 
scribed previously, it may be represented as a set of ordered pairs where the domain objects 
are nonnegative integers and the range objects are boys. A sequence may also be constructed 
with projections so that the one-to-one function could be represented as a single pair of se- 
quences; the domain object is a sequence of nonnegative and the range object is a sequence 
of names. Assume that Bs is the set of boys in the second representation. 

If we were provided the second representation then pairs(Bs ,G) could easily be defined 
as converse(~8) ;maplist(l; G )  . The purpose of the universal relation in maplist (1;G) is 
to free up the domain variable so that an arbitrary G ,  not necasarily the one with the same 
index, can be assigned to each 0.  This relation could play the role of pairs (B , G )  . 

On the other hand, if the set B is provided in the first representation then we would need 
to construct a sequence of integers so that the set B could be packaged into a single sequence. 
This could be done with a special identity relation ints(B) that would count the size of B and 
return a pair of sequences of nonnegative from the size of B down to 1. Given this definition 
we could define pairs(B , G )  as the following. 

define pairs(B,~) => maplixt(converse(B)) ; ints(~) ;maplist (1 ;G) . 
Again we can gather B's into a sequence by finding the B with the largest index, con- 

structing a sequence of integers from 1 to the largest, and mapping B onto this sequence. The 
relation ints(B) is defined using largest(B) and iota where largest (B) provides the size of 

. B and i o t a  constructs the sequence of n~nnegat~ives. For example, one element of iota would 
be the pair 3 ; [3,2, i] . The relation ints (B) is a pair of sequences of integers the same size 
as the number of B's. That is 

define iats(B) => converse(iota) ;Largest(B) ;iota. 
define iota => pi([idlpred].(zero:l;null),id). 
define largest(B) => ((B; l)*(succ;  complement(^; l)))*id. 

Indices are nonnegatives represented as sequences of 1 bits. The successor succ is an 
extension of a sequence to a sequence one bit longer. The converse of succ is pred defined aa 



the following: 

define pred => tl*(hd; converse(b1ts) ; 1) . 

8. Nonmonotonic Reasoning. A common problem with updates of real databases is 
closely related to belief revision in nonmonotonic logics. This arises when a formally valid 
conclusion must be revised or rejected. Often this, must be dealt with in the program with 
side effects by updating the database and askihg the query again. If the user is interested in 
testing possible scenarios one would like to integrate this scheme directly into the language. 

The relation combinator formalism gives a very straightforward way of dealing with up- 
dated or changed conclusions resulting from revisions of the data. Our solution extends the 
notion exhibited in the functional query language FQLIBFN]. In FQL, an update to a database 
is the application a function to a database and a transaction to return a new database. 

In our solution, the database is a relation and the set of transactions is a relation. The 
merger of the two is the relation sum which can be given a name. However, an experimental 
update would likely remain unnamed and passed as an argument to an expression to query the 
database. That is, we can incorporate the new information in an adjusted parameter without 
changing the program or any data files. Not only can a relation sum be substituted, but any 
expression or program that constructs that database can be substituted. 

For example, consider deleting a fact. That is, what would be the stable marriage assign- 
ment if b3 and g4 no longer knew each other? We can perform this experiment by intersecting 
k with the set that does not contain the element (b3; g4}, that is replacing k in the query with 
complement((b3; g4))*k. This leaves k unchanged but gives two 1-1 functions as a solution. 

solve m(b, complement({b3;g4})*k, g) . 

To find the three assignments that result from additionally including a new fact (b3; gl )  we 
would solve the query m(b , complement ((b3 : g4) ) *k + (b3 ; g l }  , g) . 

Nonmonotonic reasoning is a powerful concept that permits the quick reformulation of 
concise and expressive queries. It may eventually be appropriate for situations in which 
interaction time is the bottleneck. This system of combinators permits a straightforward and 
expressive style of program construction. 

9. Conclusion. We have described progress toward the definition of a small collection 
of program instructions based in set theory. Its simplicity is attractive for many reasons. 
Programs in this style are very expressive, widely applicable and important to program cor- 
rectness, efficiency, and reusability concerns. Secondly, this style clarifies and enhances non- 
monotonic reasoning techniques that goes beyond existing systems. It enables a flexible style 
of what-if reasoning that permits the declarative construction of a database for the purpose 
of an experimental query. Finally, the equations of a relation algebra form the foundation 
for program equivalence proofs to justifiably bridge the gap between correct and efficient 
programs. 
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Abstract 

In deadline situations the salient resource is time: all preparations must be carried out 
in advance of the deadline. If action is called for, an appropriate plan must be formulated 
and enacted before the deadline. This puts interesting constraints on the reasoning that 
goes into forming the plan and its simultaneous or subsequent execution. 

Step-logics were introduced as a mechanism for reasoning situated in time. We first 
describe them in brief. We then show their application to creating a step-logic planner 
that lets a time-situated reasoner keep track of an approaching deadline as she/he makes 
(and enacts) her/his plan, thereby treating all facets of planning (including plan-formation 
and its simultaneous or subsequent execution) as deadline-coupled. We use a key example 
of a tight deadline situation to illustrate the problem and our approach. 

*This research was supported in part by U.S. Army Research Office grant DAAL03-88-K0087, and in 
part by NSF grant IRI-8907122. 



Motivation 

Hard Deadlines: 

Example An automated helicopter pilot with a 

mission to rescue an injured soldier in time before 

the advancing enemy patrol reaches the soldier in 

distress. 

An infinite cost of overshooting the deadline 

BASIC TRADEOFF: Meta-planning 

(thinking about ,the planning process) improves 

performance, but every second spent on planning is 

one less second for acting. 



The problem 

Time taken to plan brings the deadline 
CLOSER 

The agent must account for the passage of time 

during the same reasoning 

Step-logics; account for all the time taken 

Applied here to the planning domain 



Deliberat ion Time 

Action occurs in the mere form of thinking or 

reasoning 

Traditionally actions are viewed as separate from 

the planning 

Is planning a different beast? 
Just as deliberation over the features of actions will 

lead to better plans, taking account of the features 

of planning will lead to more intelligent decisions 

about the plans. 

Routine tasks: Little or no deliberation 

Reasoning about time- bounded tasks: 
Deliberation is required, but is outside the action 

(real) time-frame 



Dudley's planning problem 

Novel situation, cannot a priori assign utilities; 

must think about them in real time 

Must met a-plan on-going deliberations vis-a-vis the 

passage of time 

Need: Not an ultimate plan but a plan which 

evolves in a changing world 

Tot a1 effort, partial plan formulation, making 

decisions about available and conceivable 

alternatives, plan sequencing, plan failure and 

revision, MUST ALL STAY WITHIN THE 
DEADLINE, AND MUST ADJUST T O  MEET 
THE DEADLINE. 



Step-logics for planning in real-time 

Inferences are characterized by the time elapsed 

during the inference 

a Now@) and the other time parameters appear 

in the on-going process of reasoning 

a Observations become inst ant beliefs 

Contradictions are not necessarily bad, they are 

permitted, and resolved in subsequent steps 

Projections are made about the future in the 

context of each plan to conjecture the state of 

the world upon hypothetical execution of 

actions in the plan 

a Inherently non-monotonic formalism, must 
retract older(incorrect) beliefs in the face of new 

evidence 



Sample Inference Rules 

Agent looks at the clock 

Modus Ponens(MP) 

i :  . . .  7 Facts@, {. . . , a, . . . , ( a  -+ P ) ) )  

Example: 

Related to planning: - 
Forms the first partial plan: 

i + 1 : Ppl(p, i + 1, {G)), Feasible(p, i )  



Sample Axioms 

Do not require Dudley to figure out how to run, 

this is a routine task, and as such requires only one 

time step to break down into atomic paces. 
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I. Introduction 

me Modular UNIP-based Vulnerability Estimation Suite (MUVES) is the new computing 
environment for the conduct of vulnerabilily/lethality studies within the Vulnerabilityllethality 
Division of the Ballistic Research Laboratory. MUVES employs the latest software 
technologies both in design and implementation to leverage scarce wlnerabilityllethality 
analyst resources, improve the ability to incorporate methodology advances, provide an 
audit trail of the analyses, and facilitate configuration management and archiving of analyses. 
MUVES is a suite of packages that are ANSI C compliant and run on System Vm compatible 
UNIX~ platforms. MUVES provides a user-friendly, menu-driven interface for the conduct 
of vulnerability/lethality analyses. Currently, the cornpartment-level vulnerability/lethality 
model, VAMP (Vulnerability Analysis Methodology Program) is implemented under this 
environment and the stochastic point-burst model, SQUASH (Stochastic Quantitative 
Analysis of System Hierarchies) is to begin implementation this PI. 

(%NIX and System V are trademarks of ATBT. 

The Modular UNK-Based Vulnerability Esti- 
mation Suite (MUVES) is the new software envi- 
ronment under which all vulnerability/lethality 
analyses conducted by the Vulnerability/Lethal- 
ity Division of the Ballistic Research Laboratory 
(BRL) be performed [I, 2 31. MUVES is a 
very general environment that is designed to 

- 

evaluate the interaction of a threat with a target 
where the target information is provided via 
ray-tracing. Target descriptions built using the 
BRL Multi-device Graphics EDitor (MGED) 
[4] are ray-traced via an interface to the BRL 
Computer-Aided Design (BRGCAD) package 
r <I 

Although currently only the compartment-level 
vulnerabilitynethality model has been implem- 
ented under MUVES, all models in the vulner- 
abilitflethality hierarchy of models will be con- 
verted to run under the MUVES environment. 
MUVES is written in the C programming lan- 
guage and employs state-of-the-art computer 
programming techniques, such as structured 

programming, for ease of maintenance and ex- 
tension. MUVES incorporates a user-friendly 
menu-driven user interface to facilitate the con- 
duct of vulnerability/lethality analyses and a set 
of post-processors for the textual and graphical 
display of results. 

II. Background and Goals 

The VulnerabilityILethality Division has a hier- 
archy of vulnerability/lethali ty models including 
the low-resolution compartment-level model 
VAMF[6], the component-level point-burst 
model VAST[:I and the component-level sto- 
chastic point-burst model SQuASH[8]. All of 
these models are coded in Fortran and exist in 
multiple copies within the Division. Each vul- 
nerability analyst modifies the code to perform 
the specific analyses requested and iterates on 
this procedure for the targetkhreat combina- 
tions included in a study. The maintaining of 
multiple copies has lead to configuration control 
and audit trail problems and the burden of 
maintainingwhat should be the same code many 



times over. Also, extensions and improvements 
to the code have not been uniform within the Di- 
vision. For many years it was felt that a single 
code could not support the various analyses be- 
cause of the need to modify or tailor the code to 
specific analyses. The goal of the MUVES proj- 
ect was to consolidate the code where possible 
without losing the flexibility to accommodate the 
different study requirements. Other goals of the 
MUVES project were to keep the audit trail of 
the inputs to the associated outputs and facili- 
tate the archiving of the inputs and outputs. 

Ill. Vulnerability Computations 

A MUVES analysis has two basic inputs, the 
threat and the target. The threat inforrnation is 
stored in data files containing the physical char- 
acteristics of a particular threat. This may in- 
clude such things as the velocity, caliber, and 
mass of a kinetic-energy penetrator, or perhaps 
the power and wavelength of a laser beam, or any 
other data required to describe the damage- 
producing capabilities of that threat. 

The target information is stored in several dif- 
ferent files, each defining a specific aspect of the 
target. The target characterization may be 
thought of in three general categories. The ge- 
ometry comprises the shape and spatial location 
of each component, plus names of the compo- 
nents. The relevant physical characteristics of 
each component (e.g., material, density, reflec- 
tivity) are recorded for use in interactions with 
the threat. Finally, there is the system structure 
which defines each target system in terms of its 
constituent components and defines the mea- 
sures of effectiveness in terms of the system and 
component hnctionalities. 

A vulnerability analysis consists of determining 
the effects of a threat against a target. Due to 
current geometry interrogation techniques, the 
motion of the threat must be piece-wise linear. 

MUVES uses a ray-tracing approach to simu- 
late a threat's trajectory to and (possibly) 
through a target. The ray-tracing package con- 
structs a path consisting of the geometric infor- 
mation about each component in a trajecto~y; 

the threat inforrnation is then attached to the 
first component of the path. Figure 1 shows a 
simplified representation of a threat path and a 
schematic of the computations performed on 
the information along that path. 

Each component in a target is assigned to a cate- 
gory. This category is used to select an Interac- 
tion Module (IM) appropriate for computing the 
effects of a specific threat impacting that com- 
ponent. Within this module, several things may 
occur: threat parameters may be altered, dam- 
age may be produced for that component, and 
new threats may be generated. The threat may 
then be propagated to the next component, poss- 
ibly with updated parameters. The interaction 
will then be computed for the next component. 
In the interaction module, all damage is re- 
corded as physical parameters (e,g., number of 
impacting fragments, hole diameter, deposited 
energy); interpretation of this damage is def- 
erred until later in the process. If new threats are 
generated, new threat paths must be determined 
(via ray-tracing), new interactions will occur, 
and more damage may be produced. This cycle 
is continued until all threats have exited the tar- 
get or have been stopped by various compo- 
nents. As shown in Figure 1, all damage is stored 
until the interactions are completed. 

When all damage-producing interactions have 
ceased, the evaluation phase begins. The re- 
corded damage is sorted for each component, so 
that all damage to a single component may be 
evaluated together. An Evaluation Module 
(EM) is called for each damaged component; the 
selection of an EM is also determined by the 
category of the component. These modules com- 
pute an engineering estimate of the level of dam- 
age to a component based on the physical dam- 
age from the interaction module(s). Typically, 
this estimate is expressed as a value between 0.0 
and 1.0 for each component. The exact meaning 
of this value may differ depending on the meth- 
od of analysis in use. 

These component damage values are combined 
using the system structure of the target to deter- 
mine the damage level of each system within the 



Figure 1. MUVES Vulnerability Computation 
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target. The target's ability to perform one or 
more missions may then be assessed using the 
measures of effectiveness for that target based 
on the functionalities of its systems. 

This process is repeated for each shot in the 
array requested by the analyst. 

IV. Software Packages 

MUVES is designed to improve the long-term 
flexibility of vulnerability methodology develop- 
ment. Software design and structured program- 
ming techniques were employed to maintain a 
high standard of quality for all MUVES code. 
Basic software functions were defined and their 
interfaces designed to minimize code redundan- 
cy. Software modules with well-defined inter- 
faces were written to perform singular tasks. 
Modules were then combined into software 
packages; each package contains software re- 
lated to a set of similar tasks. For instance, there 
is a pseudo-random sequence package which 
provides several random number generators. 
Random number generator functions in this 
package return pseudo-random numbers from 
a variety of distributions for use in various situ- 
ations. Although future applications may re- 
quire the use of random number generators 
which are not presently in this package, the mod- 
ular nature of the code facilitates enhancing the 
functionaliq. 

There are three primary classes of software 
packages: (1) general-purpose, (2) MUVES- 
specific, and (3) model-specific. Figure 2 lists 
the software packages by category. 

General-purpose software packages handle 
tasks which are common to software environ- 
ments other than MUVES. For example, there is 
a doubly-linked list package (Dq) which handles 
the creation, insertion, traversal, and deletion of 
nodes in a queue where each node has forward 
and backward pointers to other nodes. There is 
also a package which performs piece-wise linear 
interpolation of tabular data. Another package 
provides the interface to one or more ray-trac- 

ing slave processes running on the same host or 
network accessible hosts (Rt). Yet another pack- 
age provides an interface to the terminal handler 
for controlling input/output processing (Tc). 
This is only a sample of the general-purpose 
software within MUVES. Of the approximately 
130,000 lines of MUVES code written, about 
33% is general-purpose in nature. 

MUVES-specific software packages are com- 
mon to the vulnerability/lethality assessment 
process and may be used for any vulnerability1 
lethality model. These packages form a stan- 
dard library which may be applied to a general 
class of threat-target interaction models. Exam- 
ples include an interactive user interface (Ui), a 
threat<omponent interaction package (Im), 
and a final analysis results I/O interface (Fr). 
Software packages (such as the user interface) 
might require some additional code for a new 
model but would utilize these basic modules. 
For instance, for a each new model, menu entries 
would have to be added to the user interface; 
however, the manipulation and behavior of the 
menus would remain the same. Approximately 
44% of the code is MUVES-specific. 

Model-specific packages include all software 
packages which are unique to a particular meth- 
odology. These packages are required to com- 
plete the implementation of the model and to 
postprocess final results. It may also be advan- 
tageous to provide some software to set up mod- 
el inputs. As previously stated, the only model 
currently available under the MUVES environ- 
ment is the compartment-level model. For this 
model, the compari package contains the crucial 
Interaction and Evaluation Modules which as- 
sess and evaluate damage, respectively. Four 
postprocessors are provided to examine results 
in tabular and graphical formats; additional 
postprocessors will likely be added as analysts 
identify various needs. It is important to notice 
that this model only represents 23% of the total 
MUVES software; the remaining 77% has gen- 
eral applicability to other vulnerability/lethality 
models. 

As additional vulnerabilityllethality models are 
implemented under this environment, 



GENERAL PURPOSE 
NAME DESCRIPTION LINES 

Db Database server 466 
Dq Doubly-linked queues 1253 
Dx Inter-process data exchange 5077 
Er Error handling 1674 
Hm Hierarchical menus 4696 
In Interpolation 301 3 
lo Input Operations 1776 
Lk Resource Locking 1776 
Mm Dynamic memory manager 3256 
Nm Name pools 1173 
Rn Pseudo-random sequences 1303 
Rr Reusable rays 2859 
Rt Target geometry ray-tracing 5751 
Sa Shot array generator 1198 
Sc Terminal screen manager 1229 
Tc Terminal 110 control 673 
Vm Vector math 1323 
Uc Units conversion 346 
tools Software development tools - 4633 

SUBTOTAL 43475 
TOTAL 130602 
% OF TOTAL 33.29 

MUVES-SPECIFIC 
NAME DESCRIPTION LINES 

i r  Analysis arameters 4795 
post-shot' utility assessment 542 

Cd Component damage records 391 2 
Dd Data dependencies -6285 
Em Component damage evaluation 462 
Fr Final analysis results 110 3736 
Im Threat-component interaction 1484 
Ir Intermediate analysis results 110 4432 
Se Contextual system evaluation 5809 
Ti Threat-target interaction 2627 
Vu Weighted-view utility assessment 822 
Ui Interactive user interface 17359 
muverat Analysis control program 54 1 
data Data files for installation testing 4595 - 

SUBTOTAL 57401 
TOTAL 130602 
% OF TOTAL 43.95 

COMPARTMENT APPROXIMATION METHOD 
NAME DESCRIPTION LINES 

compart Compartment Model 23222 
cellxeell Cell-by-cell file Final Results 1031 
colorsil Color silhouette Final Results { 1264 

I:&,:"o1s Tools for setting up input files 1366 
Intermediate Results Converter 664 

siv Summary, IUA, and View averages xZa 
SUBTOTAL 29726 
TOTAL 130602 
?A OF TOTAL 22.76 

Figure 2. MUVES Software Packages 



the relative percentages of MUVES-specific 
and model-specific code is expected to rise in 
comparison to general-purpose code. The sto- 
chastic point-burst model is expected to require 
more model-specific packages than the corn- 
partment-level model. 

V. User Interface 

One of the largest packages in MUVES is the 
User Interface (Ui). This package provides a 
menu-driven environment in which an analyst 
specifies the parameters of a vulnerability analy- 
sis by selecting menu entries and entering infor- 
mation via the keyboard for both required and 
optional inputs. The analyst's task is eased be- 
cause the available selections are clearly visible 
in the menus. 

The User Interface automatically maintains a 
record of the selections made in the course of an 
analysis. This session information may be 
loaded at the start of a new analysis to repeat a 
previous analysis or to run an analysis which dif- 
fers only slightly from it. The session informa- - - 
tion is part of the audit trail available for every 
analysis. The User Interface maintains a record 
of every input file used during an analysis to pre- 
vent accidentally over-writing of these files. 

The User Interface also has access control lists 
so that an analyst may prevent unauthorized ac- 
cess to files used for sensitive projects. 

VI. Advantages 

MUVES has been written in the C programming 
language to be portable across a variety of hard- 
ware platforms. The code conforms to the 
American National Standards Institute (ANSI) 
C standard [Federal Information Processing 
Standard (FIPS) 1601 and the IEEE Standard 
Portable Operating System for Computer Envi- 
ronments (POSIX). Compliance with these stan- 
dards promotes longevity of the code. 

All code changes are monitored and docu-. 
mented. An audit trail of these changes is saved 
using maintenance and enhancement tracking 

tools [Source Code Control System (SCCS)]. 
The Division's algorithms for assessing and eva- 
luating vulnerability/lethality damage have been 
closely scrutinized. Recommended improve- 
ments to existing algorithms and suggestions for 
new algorithms are being incorporated only af- 
ter consulting a BRL panel of vulnerability ex- 
perts and terminal ballisticians. Algorithms are 
well-documented within the code as well as in 
the MUVES Analyst's Guide [2] and individual 
BRL reports. 

Optimizing the capabilities of today's distrib- 
uted computing assets (e.g., desktop worksta- 
tions, mini-supercomputers, etc.) has been 
achieved by providing the ability to divert corn- 
putationally intensive, ray-tracing tasks to high- 
er-performance, network-accessible, comput- 
ing assets. At the analyst-level,. ray-tracing 
information may also be captured to a file and 
re-used at a later date. Thus, the time required 
for target geometry interrogation can be signifi- 
cantly reduced. Preliminary use of reusable ray 
traces has been shown to reduce analysis run- 
times by a factor of five. 
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Abstract 

In this paper we consider logic programming as a means of both 
computing and formulating complex queries in the same system. These 
concepts are applied to a medium sized database. In particular, we es- 
tablish a term representation of the data used in a prototype battlefield 
information system and conceptually extend this database with rules. 
We develop browsing operations for that system by logically combining 
constraints. 

An extended language on binary predicates with richer operations 
is considered. In this language, programs and queria have mathemat- 
ical properties that can be specified as eqnations between relations. 
These equations support program transformations that improve query 
efficiency. This work increases the likelihood of performing declarative 
operations on distributed data. 

'The authors thank George Hartwig, Eric Heilman, Ken Smith, James Lipton and 
Morton Hirschberg. This report is a revision of BRL-MR-3882. 



1 Introduction 

Database management systems have become widely recognized as a means 
of sharing and maintaining data in a way that avoids redundancy and incon- 
sistency. They allow the user to insert, delete and modify data and perform 
simple queries with a minimum of effort. 

In recent years, however, the use of database systems has been extended 
to more and more complex applications. Databases address not just the pre- 
dictable information required by a personnel department of a company, but 
also the less predictable information required by an object oriented simula- 
tion, an expert system, or a battlefield commander. Techniques developed 
with business applications in mind do not always provide the query flexibility 
required. Further, they do not extend themselves easily to take advantage 
of rapidly developing technologies like parallel computation and automatic 
program transformation. 

Logical databases are very attractive for maintaining and manipulat- 
ing knowledge and are predicted by some to be the data management sys- 
tem of the future[l]. Reasons for this prediction are that the approach is: 
well founded, as it is based on logic; cohesive, as it allows data structures, 
queries and computations in a single notation; declarative and therefore 
non-sequential, providing more potential for tapping the faster computing 
speeds of parallel processors. These features can greatly improve program 
maintenance, reliability, generality and efficiency. 

In this project we select an existing distributed fact base and reformulate 
it as a logical database. Next, we construct some sample queries. Finally, 
we address possible query transformations and their impact on the efficiency 
of the associated queries. This approach allows evaluation of the logical 
database approach: the relative ease of development, query flexibility and 
efficiency. These issues are addressed in this paper. Further, the dynamic 
nature of the knowledge base selected allows us to examine compromises 
between absolute logical correctness and conclusions based on imperfect, 
incomplete, or changing data. Future work will examine this problem, as 
well as data visualization and query scheduling. 

2 The Information Distribution System 

Battlefield management has been identified as a major thrust for future 
Army technological development [2]. Here we find a prime example of the 



Data Dictionary 
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Figure 1: The Information Distribution System. (For this project, browsing 
operations are being developed to query the FACTBASE.) 

need for both query flexibility and efficiency. Ln a highly dynamic, unpre- 
dictable and hostile combat environment, it is crucial that queries be easily 
formulated and quickly resolved. 

The Information Distribution System (IDS) was developed as an ex- 
perimental prototype to evaluate various data abstraction and distribution 
technologies for automatically distributing information to and among fight- 
ing level forces. It assumes low bandwidth commulnications in the tactical 
combat environment. Specifically, it addresses how to insure required bat- 
tlefield information is available at the various locations where the battlefield 
management function is performed. As part of this prototype, a FACT- 
BASE was developed, which accommodates the wide variety of information ' 

required at brigade and below. Various application programs then access the 
FACTBASE information through the IDS interface [3]. Figure 1 illustrates 
the IDS structure and its relationship to the various IDS applications. 



The FACTBASE consists of various C programming structures and has 
a small query language with a C-like syntax. Some facts are relatively 
static over time, while others are more dynamic [4]. The information in the 
FACTBASE is complex, requiring all three possible database schemes: hier- 
archical, for the organizational structure; 'network, for the communications 
connectivity; and relational, for the logistics data found in TO&E or equip- 
ment manuals. This FACTBASE serves as the foundation for our logical 
database. 

3 Logical Databases 

Logic is a branch of mathematics which allows the explicit expression of 
goals, knowledge, and assumptions. It supplies a foundation for deduc- 
ing conclusions from premises and for determining validity and consistency. 
Logic programming is a formal system for specifying objects and relations 
between objects. It departs radically from the mainstream of computer lan- 
guages. It is not derived from a physical machine's instruction set, but is 
instead founded on an abstract model based on first order logic[5]. A logical, 
or deductive, database is a set of facts that are combined with a set of rules 
to allow new facts to be inferred and new relationships to  be defined. A 
logical database is firmly and declaratively founded on a small, but pow- 
erful, set of primitives. This characteristic increases reliability, confidence, 
and efficiency. 

Some of the dominant areas of interest in logic programming are pro- 
gram correctness, program optimization, parallelism and program synthe- 
sis. Major applications of logic programming hav'e been made to intelligent 
databases, natural language processing, computer aided design, molecular 
biology, and high level compilation. 

Logic programming attempts to apply the rigor of formal logic to com- 
plex, computer-based systems that lack such logical foundations. It is an 
ideal that has not been, and may never be, realized on an existing machine. 
One approximation is given by the programming language, Prolog. Prolog 
compilers have become very efficient primarily as a result of work by Warren 
and his colleagues[6]. This application is being developed in Prolog. 



Figure 2: A graphical depiction of a term. 

4 Developing a Logical FACTBASE 

TERM: 3 sin(pi1Y) + (Y 2) 

A * 
A 

We began this project by constructing a parser and translator to transform 
the IDS FACTBASE into equivalent logical relations, which we refer to 
as the Logical FACTBASE. The result of the translation is a collection 
of approximately 30,000 Prolog clauses. This representation can include 
networks, hierarchies and relations. For the initial phase of the project, we 
have confined ourselves to the static portions of the database, intending to 
address the dynamic portions in the future. The static portions include the 
general unit or system properties while the dynamic portions include such 
changing values as unit location or assignment. 

The founding data structure for the database is the term, made up of 
variables and constants. Variables are represented by character strings be- 
ginning with an upper case character. Special characters and strings be- 
ginning with lower case characters are constants. AS Figure 2 illustrates, a 
term may be thought of as a tree-like structure with leaves that are variables 
or constants (like 3, pi, Y or 2 in Figure 2). The root and internal nodes 
of the graph are constants and are called function symbols (+, *, sin and 
1). The root (+) is the principal function symbol. It  is important to note 
t ha t  function symbols are passive, syntactic objects without any implied 
interpretation. 

More precisely, a t e r m  is either a variable, a constant, or a function 
symbol with arguments that are terms. The most general term is simply 
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a variable. A term whose leaves are all constants is called a ground term. 
In the usual Prolog system, constants are stored ody  once and all other 
occurrences are simply pointers to the centrally-s tored constant. Similarly, 
if a variable occurs twice in a term, both occurrences refer to the same 
variable (like Y in Figure 2). Thus, a term is not really a tree but a directed, 
acyclic graph, that is, a tree with shared branches. This sharing can mean 
significant savings in storage and is a side effect of the unification algorithm, 
discussed in the next section. 

One special kind of term is the list. A list is made up of a nested 
sequence of pairs indicated with the period as principal function symbol. 
For example, a list of the first five integers is .(I, 42,  .(3, .(4, . (5, [ I))))), 
where we are representing the empty list with [ I .  More conveniently, we can 
represent this list as [I, 2,3,4,5]. 

Intuitively, a term may make up an entire fact or it may be the argument 
in a rule stating a fact. Terms also play the role of arrays, pointers, and 
record data structures. 

A rule is the fundamental statement in a logic program or logical database. 
A rule has a head and body separated by ': -'; it ends with a period. The 
head contains at most one term, and the body contains zero or more terms 
separated by a comma. We can read a rule declaratively, that is as a state- 
ment of fact. For example, 

means that P is true if Q is true and R is true. A rule is also called a clause. 
A unit clause is a clause in which the body is empty. A logic program is a 
set of clauses. 

The IDS data was translated into unit clauses whose principal function 
symbols have two arguments. These define proper bihary relations and are 
to  be read as statements of fact. An example would be the clause 

ech('U 1000000',' CO R'). 

This is a unit clause whose head is a single term. The principle function sym- 
bol is ech and it has two arguments, 'U1000000' and 'COR'. The function 
symbol can also be placed between its arguments, in anfix form, as 

'UlOO0000' ech 'COR'. 

Binary representation was chosen for several reasons. First, it is simple; 
database entries are easily written, easily searched, and can often be read 



FACTBASE ENTRY 
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name 
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=Y m 
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k. 

'U1000000" 
.US CORPS '(HEAVY) ' : 
'COR' ; 
'FlcoRHV': 
[ 7 orgrypc (S.idnum == 

7 orkrype (5 .  idnum == 
7 orgtype (S.idnurn == 
7 orgiype (S. idnum =a 
7 orktype (S. idnum a= 
7 orgtype (5.  idnum == 

LOGICAL FACTBASE 
EQUIVALENT 

~U1000000' caregory org. 
'U1000000' untr name 'US CORPS (HEAW)'. 
'U1000000' ech ' ~ 0 1 ' .  
'U1000000' sym 'PICORHV', 
'U1000000' sub-unit(idnum('U1000100'). num(l)]. 
'U1000000' rub~unrr[idnum('U110~000'), num(2)I. 

idnum('U1200000'), num(2)I. 
idnum('U1300000'), num(l) 
idnum(mUIO1OOOO'). num(l1j: 

'U1000000' sub-ualt(idnurn('Ul060000'). num(1)). 

Figure 3: An example of an IDS fact and its translation to proper relation 
form. 

( -  
model = 'ANITW-36'; 
clang = 'veh'; 
rypc = 'clcc'; 
dcsc = 'Mortar L o c n r ~ n ~  Radar Set'; 

as  if they were sentences. Second, with this approach, there is no loss of 
computational power. Rules on binary relations can compute anything that 
rules on n-ary relations can compute(71. - Finally, the method we use later 
for transforming queries requires that the relations have two arguments[8]. 

Figure 3 illustrates the translation of two FACTBASE entries from 
their original C structure into their logical representation. The C structures 
typically consist of a fact type, followed by a series of subfield identifiers 
which are associated by = with a subfield value. In the example, org-type 
and equip are both fact types. Looking more closely at  org,type, idnum is 
a subfield identifier, and its value is U1000000, a unique unit identification 
code developed for IDS applications. A unit clause is asserted for each of 
these triples, with the subfield identifier becoming the binary relation. The 
fact type and subfield value are the relation's arguments. A subfield value 
of 'E' indicates an empty field and is not translated. In the example, one 
organizational fact is translated to 10 unit clauses. Their principal function 
symbols are category? unit-name, ech, sym and sub-unit. Each relation has 
2 arguments. The sub-unit function, for example, has 2 arguments: parent 
unit id; and a list of 2 terms, the subunit and its number of occurrences. 

After the translation was accomplished, a small parser was written in 

props = 'E'; 
atrr * [ 7 equip-arrr (manrg == 15000 &k alt 

'mortlarty'). 
[ 7 equip-artr (~mrg  =o 24000 && alt == 

rockers') 1; 

[t~~c(elec).model('ANlTW-36')],maxrg[1JOOO. 
morr/arty']. 

[~~~(cl~~).model('ANl~~0-36')]m~r~[24000, 
rocketr]. 



Prolog, in which the operator precedence, position, class and associativity 
were established. The binary relations resulting from the translation were 
all defined in infix form. 

Finally, the database was extended with new relations. These relations 
were not part of the organizational or logistical structure, but were created to 
help form new queries. For example, as illustrated in Figure 3, we know the 
maximum range of our weapons. We can extend the data by defining what 
we mean for a given distance, R, to be within firing range of a particular 
weapon of type T and model M: 

[T, M ]  can- f ireltt-targets-at-range R : - 
[T, M] maxrg [Range, -Alt], 
Range > R. 

This new relation could be useful in searching for the right weapon to 
use against a given target. The new relations extend the translated database 
entries to a conceptually larger database. They are, in fact, rules that assist 
in formulating queries. This brings us to our next topic. 

5 Querying the Logical FACTBASE 

The next step in the application was to construct some queries. The fun- 
damental tools for querying are unification and backward inferencing. We 
therefore begin this section with a brief explanation of these basic proce- 
dures. 

The unification algon'thm is a solution procedure that derives values for 
variables from an equation between two terms. Given two terms S and T 
the unification algorithm determines values for variables as follows: 

if S and T are both constants then unification succeeds if they are 
identical and fails if they are different. 

if S is a variable, then the value for S is S = T. (Symmetrically, if T 
is a variable, then the value for T is T = S.)  

if S and T are more general terms with the same function symbols, 
then the solution is determined by corresponding unification of their 
arguments. 

if S and T are more general terms with different function symbols then 
unification fails. 



FACTS 
zcus is father of donysus. 
scmt~o;s-mo&cr-of dionysu~. 

DATABASE REPRESENTATION 

cadmu8 i~ lather ot rtmclc. 
harmoniaj-motht,ol scmtlc. 

PARENT RELATION GRAPH 

arcs il-lather-of hsrmonia. 
aphroditc i8-mother-of harmonia. 

zcur ir-father-of ares. 
hem ~crnother-of arcs. 

Dionvrus 

Cadmu1 

Aphroditc 

RULES 
X isgarcnr of Y :- X ia father of Y. 
X i ~ ~ a r c n t I o f  Y :- X isIrnothc7-01 Y. 

Figure 4: Representing the parent relationship in a logical database. 

Unification, then, can be applied to extract components of clauses. Figure 
4 illustrates a familiar example of a family database [9]. In this example, 
consider unifying the two terms X is-father-of ares and zeus is-father-of Y. 
From 

X is- f ather-o f ares = Zeus is-f ather-o f Y 

we would conclude that a value for X is X = Zeus and a value for Y is 
Y = ares. 

The second fundamental tool is backward inferencing, which is essen- 
tially the application of one rule to a goal, reducing it to a conjunction 
of subgoals. Inferencing allows us to arrive at conclusions from facts and 
rules. For example, in Figure 4, Zeus is-parent-of P'can be reduced to revs 
is-father-of Y using the very first rule dowing us to  eventually infer that 
Y = dyonysus. If we look for more solutions, we find that Y = ares also 
satisfies the query. 

A goal, or in our case a database query, is a clause with an empty head. 
This goal is a conjunction of subgoals which is solved by solving all sub- 
goals. Each subgoal is solved by unifying it with the head of a clause in 
the database. This creates values for variables. A single backward inference 
reduces this subgoal to another conjunction of subgoals until reaching the 
subgoal true, which is trivially solvable. In Prolog, subgoals are solved in 
sequential, left to right order and clauses are chosen in top to  bottom order 



Figure 5: Representing the subunit relationship in the Logical FACTBASE. 

DATABASE REPRESENTATION 

'B3220000' sub-un~t [idnum('B3220100'). num(l)]. 
'B3220000' sub-unit [idnum('B3223000'). num(l)]. 

'B3220000' sub-unit [idnum('B3224000'). num(l)].  

'B3223000' sub-unit [1dnurn('B3223200'). num(l)]. 
'B3223000' sub-unit [idnum('B3223600'), num(l)]. 

'B3223200' sub-unit [idnum('B3223210'), num(l)]. 
'B3223600' sub-unir [idnurn('B3223610'), num(l)]. 

'B3223600' sub-unit [idnum('B3223620'), nurn(l)]. 

with backtracking to find additional solutions. Again, looking at Figure 4, 
we can determine who are the parents of Semele by solving the goal 
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B3223210 B3223610 83223620 

: -X isparent-of sernele. 

This unifies with the head of the first rule, yielding X isfather-o f sernele. 
The solution for X in that subgod is X = cadmus. Alternatively, the goal 
resolves to X is-motheraf semele, in which we find a alternate solution 
X = harmonia. 

In Figure 5 we extend this technique to the FACTBASE data, using 
the subunit relation somewhat like the parent relation. A subunit B means 
thatA and B are members of the subunit relation, with A being the parent 
unit. 

Once the database has been established, a number of queries can be 
solved without any programming, by the selective placement of constants 
and variables in goals. Prolog attempts to unify the goal with unit clauses 
in the database. For example, using the data in Figure 5, we may identify 
all the subunits of B3220000, with the simple query, 'B3220000' sub-unit 
X. Further, all relations defined with unit clauses can be queried in either 



direction. This is a powerful aspect of the unification algorithm, for it allows 
us to answer questions about the converse of a relation in the database as 
well as about the relation itself. For example, the subunit relation has been 
defined, so we have immediate access to its converse, the parent relation. 
That is, we can identify the parent unit for 83223600 through the query, 
X sub-unit [idnum('B3223600'), -num]. Similar queries can be made for all 
relations established in the database. Queries solved with a single unification 
are satisfied almost immediately. 

As indicated previously, more complex queries may require the definition 
of new relations. Suppose we wish to know whether B3223610 is under the 
control of B3223000. In this case, we would like to know if B3223610 is a 
subunit of B3223000, or if it is a subunit of a subunit of B3223000, etc. We 
define the controls relation recursively as follows: 

A controls B : - A subunit B.  
A controls B : - A subunit C ,  

C controls B. 

Now, we may query with the goal 'BJ223000' contmls B3223610'. Prolog 
verifies that there is a path through the organization graph in Figure 5 from 
B3223000 to B3223610 through B3223600, returning the answer true. 

6 Query Transformations 

Finally, we address possible query transformations and their resulting im- 
pact on the efficiency of the associated queries. Sometimes the most obvious 
expression of a query is not the most efficient for implementation, as illus- 
trated in the example below. One of the benefits we hope to derive from this 
logical approach to computation is to be able to state queries in a straight- 
forward manner, and then reliably transform these queries to optimize their 
execution. 

The solution procedure for a query starts by unifying the goal with the 
head of a clause to determine values for variables. This environment is used 
to solve each subgoal of the body in turn. If any subgoal is unsolvable then 
alternate clauses are applied by backtracking to create. possible alternate 
paths. A solution can be found more efficiently if the search can be correctly 
constrained in the appropriate direction. But note that an overconstrained 
system may be unsolvable. 

Consider the problem of searching for a path through a graph described 
by a relation R. This is essentially asking if the two endpoints ( x ,  y) of the 



graph are members of the transitive closure R+ of R. A pair is a member of 
the transitive closure of R if either the pair is in R or there is an intermediate 
point z such that (x, z )  is in R and ( z ,  y) is in R+. In symbols this is written 
a3 

R+ = { ( x ,  p)((x, y) E R or 3t, (2, Z) E R, and ( z ,  y) E R+). 

Operationally, R+ is the exhaustively repeated application of R. 
The controls relation, that is the transitive closure of the subunit rela- 

tion, provides a perfect example of how we can improve the efficiency of the 
solution procedure by transforming the query. In this example, we say that 
A controls B if there is a path from A to B in the graph formed by the 
subunit relation. The controls definition naturally schedules subgoals from 
the top of the command hierarchy downward. As illustrated in the following 
example, this schedule is inappropriate and inefficient for the database as 
structured. A bottom up search would have been better. 

Consider the command hierarchy depicted in Figure 6. In this graph, 
the lines indicate the subunit relation, with higher nodes indicating parent 
units and lower nodes their subunits. This simplified example aUows us to 
limit the controls relation to two levels. That is, a unit controlsits subunits 
and its subunits' subunits. To determine if I33224600 is under the control 
of B3220000 we find an intermediate unit V such that B3220000 subunit V 
and V subunit B3224600. Efficiency greatly depends on which subgoal is 
selected first. If we start with the goal B3220000 subunit V then we have 
multiple solutions, requiring us to travel through the tree, first through node 
B3220100 and its subunits, then through node B3223000 and its subunits, 
and finally to our solution point under B3224000. On the other hand, if we 
start with the god V subunit B.3224600, it has a unique solution, quickly 
generating our solution path. 

The reason that the second subgoal should be chosen first is that the 
converse of the subunit relation, denoted (subunit'), is a function. Each 
unit has exactly one parent unit. Thus it would be much more efficient to 
carry out the search in this order, as each choice would be unique. We, 
therefore, transform the query to find a path in the tree with 

denoting transitive closure with f. The subunit relation does indeed de- 
fine a tree, so A controls B is reversible. Since the converse of subunit 
is a function, the 'paths through the tree can be most efficiently found by 
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Figure 6: A sample command hierarchy graph. 

searching up the tree instead of top down. The bottom up search requires 
no backtracking. Here we note that it is the nature of the subunit relation 
that suggests this transformation. For the large organizational structure in 
the IDS, the bottom up solution of a sample query was immediately solved 
whereas the corresponding top down query took more than an hour. 

The reversibility of the unification algorithm is what allows us to repre- 
sent converse relations. Some knowledge about reversibility can save a great 
deal of computation time. Searches both up and down the hierarchy in the 
originally defined IDS database would have required that we add the con- 
verse relations to the data, essentially doubling the storage requirements for 
the subunit relation. This trades storage for time, and sacrifices modularity 
and maintainability. With our new approach, the tradeoff is unnecessary. 

On the other hand, while queries are completely reversible when solved 
with unit clauses, termination is unpredictable 'in general. In Prolog, some 
queries that can be easily solved in the forwaxd direction may not termi- 
nate in the reverse direction. In addition, some operations in Prolog only 

, 

have meaning when all arguments are ground terms. Attractive solutions to 
these problems are emerging from research in constraint logic programming 
and higher order extensions to logic programming[8,10]. These approaches 
solve bigger classes of problems by giving declarative extensions to some 
operations in logic programming such as negation, inequality, and ordering. 



7 Future Work 

Future work will emphasize three main areas: first, the notoriously difficult 
problem of synchronizing data updates with data queries, including deter- 
mining constraints that can maintain integrity; second, methods of pictori- 
ally representing the relations in the Logical FACTBASE and the associated 
queries; and, finally, further query optimizations. 

In Section 2 we indicated that the static portions of the FACTBASE 
were translated first. The dynamic data would be translated in future. This 
is because logic programming with a set of clauses does not accommodate 
axioms that may be modified in the middle of a deduction [ll]. An at- 
tractive compromise, however, can be derived from a thorough treatment of 
binary relations[8,12]. Accepting the fact that change is an integral part of 
our distributed database, we concentrate on cleanly separating the abstract 
portions of our relations, the rules, from the facts. That is, we separate the 
program from the data. Once this is accomplished, the algebra of equations 
between relations is an appropriate formalism and an ideal foundation for 
query optimizations that hold independently of the data. The FACTBASE 
information will be set aside as an area designated to be modified. Queries 
operate on a snapshot of the database without attempting to maintain a 
notion of logical truth. Equations between combinations of relations hold 
independently of the data. We extend this concept and further partition the 
data into distinct relations to represent partitions of the database such as 
subunit and owns~quipment .  Then we can pass these relations along as ar- 
guments to the previous operations. This adds another level of generality to 
the query language so that generic operations can be defined and applied to 
portions of the database or to other predefined operations on the database. 

Secondly, we will experiment with ways of pictoria.ily representing the 
relations in the logical FACTBASE and the associated queries. There is a 
close relationship between proper binary relations and combinatorial graphs. 
This strongly suggests a visualization technique for logical databases that 
may allow the casual user to bypass much of the notation and abstract 
syntax. 

Finally, we will explore schedules for constraints as binary relations. This 
includes further methods for reordering subgods, merging recursions, and 
propagating constraints. There is also a close relationship between declar- 
ative languages and pardelism. The mathematical properties of program 
operations such as associativity and commutativity indicate that order of 
some computations can be ignored. 



8 Conclusions 

We selected an existing distributed fact base and reformulated the static 
portion as a logical database of binary relations. A parser of C structures 
was built and a translator constructed to separate the information into re- 
lations for querying and updating. We identified the operations required to 
develop our queries. Finally, some high level, decision critical queries were 
formulated to test flexibility. Simple query transformations were applied to 
improve efficiency. 

At the end of this first phase, we find that the logical database has a 
relatively simple structure. Once its structure was established, a number 
of queries were immediately available through unification. These were sat- 
isfied almost instantaneously; More complex queries were built using rules 
as statements of a recursive programming language, with power, flexibility 
and limited reversibility. The approach to date puts us in a position to 
begin examining the effort required to develop queries and the computation 
time required to perform those queries on the data one might expect in a 
battlefield environment. 

A single inference is comparable to one statement executed in a proce- 
dural language. The number of inferences involved is critical to efficiency 
and may be very large if the order of subgoal selections is not carefully con- 
trolled. Prolog queries are not always reversible, partly because subgoals are 
chosen in a predetermined order. This makes naive queries more difficult to 
formulate and implies that careful attention must be paid to the solution 
procedure when scheduling subgods. A view of programs as proper binary 
relations, along with an associated set of equations between relations, is a 
step toward understanding and harnessing the limited reversibility of logic 
programs. 

The primary claim of this work is that logical databases are a conve- 
nient vehicle for the management of battlefield information. The primary 
advantages are improved program maintenance, reliability, efficiency and 
generality. While no system can perfectly represent a distributed database, 
we have begun applying a logical model that is an attractive compromise, 
viewing both queries and data as proper binary relations. The query lan- 
guage we will use has a set of operations with an associated theory. This 
theory is independent of the data and should be unaffected by its volatility. 
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Large scale computerized battlefield simulations have been in existence for a 
long period of time. CEM VI (Concepts Evaluation Model VI), upon which we have 
directed our effort, was first developed in 1968. Since then, it has evolved through 
several different authors and types of Fortran implementations. The last critical 
update occurred in 1983 with the introduction of ATtrition using CALibrated param- 
eters (ATCAL) algorithm. 

CEM VI is a discrete event simulation. As such, it is subject to random and a 
priori unknown branching. Thus, data are not contiguous in memory, and the data 
structure evolves with the simulation. The algorithm, as formulated, was unable not 
amenable to vectorization on the new Cray architectures. A typical CEM VI simula- 
tion, executed in the scalar CPU, typically consumes several to 10 hours of Cray 2 
CPU time. To ameliorate this situation, we developed a strategy whereby the kernel 
of CEM VI (ATCAL) could be vectorized. 

After careful investigation it was determined that data motion was the key in 
realizing the potential for vectorizing the ATCAL algorithm. Three different strate- 
gies were investigated, with execution rates determined for each method. Taking 
advantage of the Cray gatherlscatter hardware was determined the most feasible of 
the strategies investigated. After implementing the strategy in ATCAL, a speedup of 
8.09 was obtained. 

With the implementation of the vectorized ATCAL algorithm into the CEM VI 
code, we expect considerable (up to a factor of 2) improvements in overall CPU run 
times-with increased performance, this will enable the Army to run more cases, and 
the cases each can be of greater fidelity (higher resolution). This may be particularly 
germane now that the development of a stochastic version of CEM VI is underway. 



Theme of the Work 
"I shall be accused, I suppose, of saying that no event in war can ever occur which 
may not be foreseen and provided for. To prove the falsity of this accusation, it is suf- 
ficient for me to cite the surprises of Cremona, Bergop-zoom, and Hochkirch. I am 
still of the opinion, however, that such events even as these might always have been 
anticipated, entirely or in part, at least within the limits of probability or possibility." 

Baron de Jomini, General and 
Aid-de-Camp of the Emperor of 
Russia, The Art  of War, 1862 
(trans. by Capt. G. H. Mendell 
and Lieut. W. P. Craighill). 

1. Description of CEM 

1.1 History 

The Concepts Evaluation Model (CEM VI) originated in 1968 as the Theater Com- 
bat Force Requirements Model (TCM) developed by Research Analysis Corporation 
as part of the FORWORN research program. TCM was designed to provide theatre 
level combat capabilities and requirements that would be sensitive to the mixes of 
units for both sides. After becoming operational, TCM was modified to include force 
evaluation and to satisfy needs for the army project Conceptual Design for the Army 
in the Field(C0NAF). TCM then became known as CONAF Evaluation Model I 
(CEM I). During the next six years the model was modified several times improving 
methodology and applications in alternative theatre combat forces. In 1974 the 
project was turned over to the Army and renamed Concepts Evaluation Model IV, 
retaining the acronym CEM IV. With the advent of a radically different theater 
defense concept for Europe, CEM IV was improved once more and renamed CEM 
V, which was studied by the US Army Concepts Analysis Agency (CAA) from 1979 
to 1983. In 1983 CEM VI evolved from CEM V with the onset of a new method for 
calculating combat attrition; this was the introduction of ATCAL (An Attrition 
Model Using Calibrated Parameters). 

1.2 Discrete Event Simulation 

The structure of the solution for the CEM VI model evolves with the simulation in a 
complex fashion, dependent upon input at the beginning of the simulation. There are 
multiple branching levels, each containing multiple constraints. The simulation is 
deterministic in that, with the same input file used to start the simulation, the same 



results will be obtained. This type of simulation does however have branching apri- 
ori unknown, inthe sense that the evolutionary structure of the problem can be dif- 
ferent from simulation to simulation based on the difference in input, i.e. the 
structure of the simulation is input driven. A typical simulation over multiple time 
steps can consume few to ten hours of Cray 2 time. The evolutionary structure of the 
of the problem is depicted in Figure 1. 

1.3 Battlefield Schematic 

The battlefield for the CEM VI simulation is broken down into two distinct forces, 
one side containing a blue brigade the other a red division, the two sides being split 
by the Forward Edge of Battle Area (FEBA). The engagements are performed over 
diverse terrain - the smallest level of which is a sub-sector. The terrain is broken 
down into even smaller units called mini-sectors, as can be seen in figure 2. 

Figure 1 Evolutionary Structure of Problem 

1.4 CEM VI - Scope and Fidelity 

CEM VI as it relates to other battlefield simulations can best be shown in the follow- 
ing Figures 3 and 4. CEM VI encompasses large areas or theater level battles con- 
taining complete armies, whereas other simulations range from smaller areas where 
individual weapons are considered to groups and divisions. CEM VI is a low resolu- 
tion simulation in which a kill matrix is used to encompass entire groups of weapons 
and targets, while high resolution simulations deal principally with the physics of 
individual weapon types. 
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2. Issues Involving CEM VI 

There are two distinct issues involved with the CEM VI simulation: performance and 
composition of forces (as they evolve with the simulation). To wit, is the domain of 
the kill matrix used in the evolution of the problem that of the lower resolution sim- 
ulation? 

The main issues involved with the performance of the CEM VI simulation can be 
broken down into five distinct categories: data motion,vectorization,parallelization, 
input/output and debugging. 

The data motion consists of the movement of killer victim scoreboards which are set 
up as arrays and used to calibrate attrition rates. These arrays are dependent upon the 
initial input into the simulation, and thus can cause different outcomes based on ini- 
tial conditions. Because of their size, these arrays constitute large amounts of data 
motion and consume significant CPU time in the process. 

With the advent of vector machines, vectorization of the code plays a key role in per- 
formance enhancement. For our purposes here, vectorization and parallelization are 
basically similar. 
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CEM VI consumes significant ilo resources, required to set up correct killer victim 
scoreboards. Additionally, it is desirable to be able to interpret intermediate results. 
Therefore at this point, it is not advisable .to consider changing this portion of CEM 
VI. Debugging plays an important role in performance monitoring as it does little 
good to increase the performance of the program if the results are incorrect. 



3. Our Approach to Improvements in Performance 

3.1 Vectorization of the Kernel 

The kernel of CEM VI consists of the ATCAL algorithm which performs engage- 
ments over subsectors. The modification of ATCAL to enhance vectorization yields 
the best return in that it is the least invasive approach (fewest code modifications) 
and initially ATCAL, consumed 65% of the CPU time (from profiling) apart from 
input/output. 

3.2 Development of Visualization Tools 

With the development of visualization tools, a more accurate interpretation of the 
results can be made and performance can be monitored more easily. 

3 3  Results of Improved Performance 

With improved performance CPU time will be lowered, thus allowing for more runs. 
With more runs greater optimization of force mixes can be improved. Also, with less 
CPU time being consumed, it will allow an increase in the resolution of the simula- 
tion, resulting in greater physical fidelity. 

4. Data Motion as the Key Problem 

Through intensive study of the ATCAL algorithm, it was determined that data 
motion was the main cause for CPU time consumption in the kernel. With apriori 
unknown branching taking place involving ammunition constraints, weapon con- 
straints, firepower constraints and target constraints, this presented a challenging 
problem in algorithm design. 

4.1 In-Depth Study of Data Motion 

Here, we study three approaches to perform the data motion to capture the dynamic 
structure of the solution. Amdahl's law illustrates the potential payoff, but yields no 
information as to the vector overhead involved, or as to the best strategy to employ. 
We examine in detail strategies which allow these factors to be determined. 



4.2 Modified Amdahl's Law 

The payoff for the added complexity of structuring the algorithm to perform data 
motion is well illustrated through a modification to Arndahl's Law [Amdahl, 19671 
as follows. 

Let f, represent the fraction of time spent by the executing code in the vector hard- 
ware, D the ratio of time spent in the vector hardware performing purely data motion 
to that spent doing useful work, F the fractional inefficiency in vector calculations 
due to overhead (including start-up), V/S the ratio of scalar to vector execution rates, 
and R the vector (with data motion) to scalar speedup ratio. Then, accounting for all 
work to be done including scalar work, and vector work (real vector work and "use- 
less" vector work, i.e., due to data motion), and as an approximation, neglecting 
overlap, then: 

The quantities D and F may be considered in combination, i.e. in the following D 
represents the sum of (D + F). The speedup ratio, R, calculated from equation (1) is 
plotted in Figure 5, with p varying along the abscissa, and D varying parametrically. 
The figure is constructed for V/S = 12, approximately representative of Cray hard- 
ware. Tho facts are apparent from the figure: (1) good speedup may still be obtained 
for large amounts of data motion, and (2) the code must be highly vectorized to 
achieve close to maximum speedup with data motion. Both facts result from the 
much higher execution rate of vector hardware, when compared to scalar hardware. 

4.3 Strategy I - GatherIScatter . 

This involves utilizing the scatterlgather hardware in the Cray to access data ele- 
ments non-contiguous in memory, according to a vector of indices. For example, 
suppose the vector of indices for those elements which pass a specific test are 
denoted INDEX(1). Specifically, the following Fortran pseudo-code effects the gen- 
eration of such: 

K = O  
DO I = 1, LENGTH 

IF (TRUTH(1)) THEN 
K = K + 1  
INDEX(K) = I 

END IF 
END DO 
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Figure 5 Arndahl's Law Modified for Data Motion 

The above loop does not vectorize in Fortran (a deficiency of CFT77). To generate 
the above list in the vector hardware, it is necessary to use the Cray SCILIB routines 
such as WHENFLT, WHENFGT, etc. In Figure 6(a), we show rates at which vectors 
of such indices can be generated versus input vector length with the truth ratio (frac- 
tion of elements which pass the test) as a parameter. Here, we plot results in MOPS 
(Millions of Operations per CPU Second), where we define one operation as the gen- 
eration of one index. 

Next, data elements must be gathered. The gather is done in a fashion which pre- 
serves the original order of elements. As such. we term this a vector '6compress.'7 
Qpically, the execution rate of a vector gather on a Cray is independent of the stride 
(increment in memory between elements). However, for a compress, memory bank 
conflicts arise due to the preservation of order. This makes the execution rate depen- 
dent upon truth ratio (or density) as shown in Figure 6(b). 

Note that the peak rates are fairly high, but that long input vector lengths are required 
to achieve near peak performance. This makes the Cray function more like a long- 
vector architecture (such as the Cyber 205 used to be). Thus, it behooves us to struc- 
ture the algorithm so as to employ long vectors (i-e., i,n the case of CEM VI, perform 
engagements over multiple, possibly many, sub-sectors). 
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4.4 Strategy 11 - IF THENIELSE Structures 

Another strategy, allowing the overhead of index generation to be by-passed, is illus- 
trated in the following loop: 

DO I = 1, LENGTH 
IF (TRUTHl(1)) THEN 

execute statement 1 
ELSE IF (TRUTH2(1)) THEN 
execute statement 2 

ELSE 
execute statement N 

END IF 
END DO 

Execution rates for this strategy are shown in Figure 7. Here, although the operation 
proceeds at vector speed, the execution rates are low. The highest execution rates are 
for the case of N=2 (IF THENlELSE) structures. Fortunately, most decisions in dis- 
crete event simulations are binary. Even where there are cases that do not, the logic 
may frequently be reduced to binary decision trees. 
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4.5 Strategy 111 - Logical n t h  Vectors 

The third strategy is a spin-off of Strategy 11, in that the predicates (conditionals) are 
stored as logical vectors rather than being evaluated (and lost) at the instant of run 
time. The advantage this approach offers over strategy I1 lies in the ability to perform 
successive levels of branching. The key to this strategy lies in the ability of the Cray 
to perform Boolean (logical) operations such as AND'S and OR'S. In Figure 8, we 
depict the execution rates for Cray architectures for logical operations. These opera- 
tions must be done in series with those of Strategy I1 

5. Results and Discussion 

In our case, since we have only a few levels of branching, and since most of the data 
motion in CEM VI occurs at only 1 level of indirection, we choose Strategy I as 
potentially the most effective strategy. We proceed to describe in greater detail the 
data motion in CEM VI for a single engagement. 

In our case we loop over 51 vehicle types for the red side as targets with the blue side 
as shooters, then over 51 vehicle types for the blue side as the shooter and the red 
side as the target. For each of these target types, a bias array is used to determine 
whether the shooter vehicle employs direct fire or indirect. This constitutes a signif- 
icant amount of data motion. In addition to using Strategy I, we have in-lined the sub- 
routine which computes direct fire kills using the kill matrix. 
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We instrumented the code to determine that 90% of the time is spent in performing 
direct fire. At a truth ratio of 90%, Figure q a )  indicates a potential speedup of about 
4 when generating indices, and Figure q b )  indicates execution rates of about 50 
MOPS. We have measured a total speedup of 8.09 after iimplementing these-tech- 
niques. Figure 5 indicates that we are in the domain of from 0 to 50% penalty for vec- 
torized data motion (Dl, and of from about 92% to 100% of the code being vectorized 

6, Conclusions 

During data motion, Cray architectures perform like long-vector machines such as a 
Cyber 205. Even with the penalty of data motion, high execution rates are possible 
as can be shown by the fact that a speedup of more than 8 was attained after vector- 
izing ATCAL. A video showing the improved performance and the state of the sim- 
ulation was also developed in conjunction with the vectorization of ATCAL. 

7. Recommendations 

With the implementation of the vectorized ATCAL into CEM VI, actual speedups in 
the CEM VI code from the enhanced ATCAL should be determined. For future con- 
siderations in the improvement of CEM VI in both structure and performance, the 
exploration of alternative vectorization strategies should be studied. Some possible 



directions might be vectorizing over some sub-sectors or possibly over all sub-sec- 
tors depending on memory constraints. A visualization package should be developed 
to show the additional'capabilities of the enhanced code, and too improve the user 
interface between terminals and software. A visualization package could also assist 
in interpreting the process, especially if implemented with more error trapping. Other 
possible equation solution strategies should also be studied; now the code imple- 
ments direct substitution for convergence of the main attrition loop. Other possible 
candidate solution techniques might be Newton iterations or Broyden updates. 
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EVOLVING PHASE BOUNDARIES IN DEFORMABLE 

CONTINUA 

Morton E. Gurtin 
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ABSTRACT. Recently, Gurtin and Struthers [2] developed a dynarnical theory of 
phase transitions in crystal-crystal systems in which the interface is sharp, coherent, and 
endowed with energy, entropy, and superficial force. A fundamental conceptual ingredient 
of the theory is the use of three force systems: defomat ional  forces that act in response to 
the motion of material points; accretive forces that act within the crystal lattice to drive 
the crystallization process; attachment forces associated with the attachment and release 
of atoms as they are exchanged between phases. Here I will discuss the main results of the 
theory, which are cons tit ut ive equations and balance laws for the interface. 

CONSTITUTIVE THEORY. The surface energy and the accretive and defor- 
mational surface stresses are allowed to depend on the bulk deformation gradient F, the 
normal n to the interface, the normal speed v of the interface, and a list z of subsidiary 
variables of lesser importance. It follows, as a consequence of thermodynamic admissi- 
bility, that: the surface energy and the accretive and deformational surface stresses are 
independent of v and z, and depend on F at most through the tangential deformation 
gradient F; in fact, the energy 

completely determines the surface stresses through relations, the two most important of 
which are: 

in which S is the deformational (Piola-Kirchhoff) surface stress, c is the normal accretive 
stress, aF is the partial derivative with respect to F, and D, is the deriva-tive with respect 
to n following the interface. A further consequence of thermodynamics is an explicit 
expression for the normal attachment force T :  

rr = k + + bv, b =X(F,n,v,a) 2 0 ,  

where Q is the difference in bulk energies, while k is related to changes in momentum and 
kinetic energy across the interface. These results imply that the sole source of dissipation 
is the exchange of atoms between phases, with bv2 the dissipation per unit interfacial area. 



INTERFACE CONDITIONS. The system of constitutive equations and balance 
laws combine to give the interface conditions1 

dzvsS + (S2  - S l ) n  = pv(vl - v 2 ) ,  
(4) \El - qz = (Sin) - (Fin) - (S2n) . ( F 2 n )  - k - g - b v ,  

with 

The subscripts 1  and 2 denote the two phases: Ql and %P2 are the bulk energies per unit 
reference volume; S1 and S2 are the bulk Piola-Kirchhoff stresses; F1 and F2 are the bulk 
deformation gradients; vl and vs are the material velocities; p is the reference density. 
The remaining quantities concern the interface: L is the curvature tensor with K ,  its trace, 
the total curvature; divs is the surface divergence. 

SIMPLIFIED Assume that both phases are isotropic with lin- 
earized stress-strain relations in each phase, and neglect all interfacial terms with t he 
exception of the dissipative term bv in (4). Then for longitudinal motions with scalar 
displacement u(x ,  t )  and scalar tensile stress a ( x ,  t )  the basic equations are3 the bulk 
equations 

2 1 
(phase 2) c2uzz = utt, u = uo + Pzu,,  + = +o + Q O U ,  + - P 2 4  2 

and the interface conditions 

["I " -pv[.utl, [ut] = - v [ u z ] ,  

[+I = (4 [uzI+ bv , 
where cq = P ; / p  Gith pi the elastic moduli; uo and qh0 are constants; [ ] denotes the jump 
across the interface; () designates the average interfacial value. 

For statical situations: (4) l  was derived by Gurtin and Murdoch [6] as a consequence 
of balance of forces; (4)2 and its counterpart for crystal-melt interactions were derived by 
Leo and Sekerka [5] (cf. Johnson and Alexander [3,4]) as Euler-Lagrange equations for 
stable equilibria. In the absence of surface stress and surface energy ( S  = 0 ,  C = 0 ,  $ = 0): 
(4)l is a standard shock relation; (4)2 (with b f 0) was established by Abeyaratne and 
Knowles [7] and Truskinovsky [ I l l .  Counterparts of ( 4 )  for a rigid crystal in an inviscid 
melt were derived in [ B ] ;  an analog of (4)2 for a rigid system was given in [I]. 

Cf. [9] 
Cf. Abeyaratne and Knowles [ l o ] ,  whose treatment is slightly different. 



For antiplane shear with scalar displacement u(x, y, t )  and shear-stress vector T(x, y, t )  
the basic equations are the bulk equations 

1 
(phase 1 )  s:hu = utt, T = plVu, (I = 5p~lvu12 

1 
(phase 2 )  : siAu = utt, T = To + plVu, (I = (Io + To - Vu + 3 P z l ~ u 1 2  

and the interface conditions 

where A is the laplacian; s: = pi / p  with pi the shear moduli; To and $0 are constants. 
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Let X(t),t 2 0, be a diffusion process on the real line; and, for u,t > 0, let L,(u) be the sojourn time 

of X(s),O 5 s 5 t, above the level u, that is, the measure of the set {s:O 5 s I t,X(s) > u). The main result 

is a central limit theorem for the random variable L,(u), for t + - and a class of functions u = u(t) -, -. 

The conditions in the hypothesis of the theorem are stated in terms of the coefficient functions in the 

inlinitesmal generator of the process, namely, the coefficients of diffusion and drift, denoted as a(x) and 

b(x), respectively. The conditions that are employed imply, in particular, that there is a stationary proba- 

bility distribution for this process. In the case of a constant level u, the validity of the central limit 

theorem was established long ago (Maruyarna and Tanaka, 1957). More recently the author considered 

the case u(t) + -. Let S(x )  be the scale function of the process, defined as 

In the case where u(t)  grows with t in such a way that S(u(t)) - t, for t + -, it was shown (Berman. 

1983,1988) that the random variable [2b2(u)la(u)]~,(u) has a limiting infinitely divisible distribution of 

a specific form. The present work deals with the case falliig between the situations S(u(t)) - t and u(r) n 

constant, namely, S(u(t))lt + 0 for t + -. It is shown, in this case, that (L,(u) - EL,(u) )~(vu~L,(u)~~ 

has a limiting standard normal distribution, for any starting point of the process in the state space. 

Asymptotic forms for the normalizing functions EL,@) and (Var~,(u))+' are derived in terms of the 

coefficient functions a(x) -and b(x). 

Here is the precise statement of the main result: 

THEOREM: Let X(t),t 2 0, be a diffusion process defined by the stochastic integral equation 

X(t) -X(t') = $b(x(s))h + $ nG(x(s))w(ds) . 0 < t' < t, where W(s) is the adapted Brownian motion 

Research sponsored by the U.S. Army Research Office 



The coefficients a(x) and b(x) are assumed to satisfy the following conditions: 

a(x)  and -b(x) are regularly oscillating for x + m. (For the definition, see Beman (1982).) (1) 

Put 

and assume 

inf (v(x):x 2 u )  , O. 
liminf 
u + -  ~ ( 1 1 )  

m 

Let m(x) be the density of the speed measure: m(x) = (a (x )~ ' (x ) ) - l ;  and assume that rn(x)& < -. Let - 
u(t)  be an increasing function such that 

S(u(t)) - 0 lim - - 
t t  

and 

Lim Iimrup 8 s  (U ( t ) )  = 0. 
s+o  I ,- S(u(tS)) 

Then there are explicitly constructed functions u(t )  and ~ ( t ) ,  expressed in terms of the coefficients func- 

tions a(x) and b(x), such that (L(t)  - u(t)) lo(t)  has a limiting standard normal distribution for t  + -, for 

any initial point of the process. 

If EL,(u ( t ) )  and Var L,(u(t)) are the mean and variance under the stationary distribution (which 

exists because the speed measure is finite) then a weak compactness argument shows that 

(L(t)  - EL& (t)))l(Var L,(u ( t ) ) fh  also has a standard normal limit. 

The proof will be given in a complete paper to be published elsewhere. 
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ABSTRACT. To recover 3-D structure from a natural scene image involving textures, 
neither the Shape-from-shading nor the Shape-from-texture analysis is enough, because both 
radiance and texture information coexist within the surface of a natural scene. A new 3-D 
texture model is developed by considering the scene image as the superposition of a random 
texture image and a smooth shaded image. The whole image is analyzed using a patch-by- 
patch process. Each patch is assumed as a tilted and slanted texture plane. A modified 
reflectance map function is applied to describe the deterministic part, and the Fractional Dif- 
ferencing Periodic model is chosen to describe the random texture, because of its good per- 
formance in texture synthesis and its ability to represent the coarseness and the pattern of the 
surface at the same time. An orthographical projection technique is developed to deal with 
this particular random model, which has a non-isotropically distributed texture pattern. For 
estimating the parameter, a hybrid method which uses both the least square and the max- 
imum likelihood estimates is applied directly to the given intensity function. By using these 
parameters, the synthesized image is obtained and used to reconstruct the original image. 
The contribution of this research will tie in combining shape-from-shading and Shape-from- 
texture techniques to extract 3-D structure and texture pattern features from a single natural 
scene image which contains both shade and texture in it. 

INTRODUCTION. An imponant task in computer vision is the recovery of 3-D scene 
information from single 2-D images. 3-D analysis of an image can be broken down into two 
main categories, Shape-from-shading and Shape-from-texture. In Shape-from-shading tech- 
nique, scene radiance information plays an important role to extract 3-D surface information 
from image data [6,15, 201. On the other hand, in Shape-from-texture technique, the texture 
pattern instead of shading is used to extract 3-D structure. Since texture gradients behave 
like intensity gradients, the shape of a surface czn be inferred from the pattern of a texture on 
the surface by applying statistical texture analysis [14,22,23]. 

However, for describing a natural scene image, both the above approaches have their 
own limitations. The shape-from-shading technique is applicable only under the assumption 
that the surface is smooth and has constant albedo, while the Shape-from-texture technique 
requires the surface to be relatively complex so that texture information can be extracted. 
Thus, neither technique is suitable to recover 3-D structure information from a natural scene, 
because both radiance and texture information coexist within the surface of a natural scene. 
Therefore, a robust technique is needed to handle this shortcoming. Recently, the fractal 
scaling parameter was introduced to measure the coarseness of the surface, and applied to 
represent the natural scene surface [21]. However, this fractal model is not enough to 
represent the real 3-D texture image, because even though two surfaces are estimated to have 
the same fractal scales, these surfaces can have different texture patterns. 
- . -- 
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In this paper, a composite model of Shape-from-shading and Shape-from-texture is 
developed to represent a 3-D surface image considering the scene image as the superposition 
of a smooth shaded image and a random texture image, that is, the deterministic function 
x(ll, 12) and the random function y (11, 12). Then, the orthographical projection is adapted to 
take care of the non-isotropic distribution function due to the slant and tilt of a 3-D texture 
surface. The Fractional Differencing Periodic (FDP) model given below is chosen to 
represent the random texture. 

Here zi is the delay operator, corresponding to li, and ((*,*) is a white noise sequence. The 
advantage of the (FDP) model is that it can simultaneously represent the coarseness and the 
pattern of the 3-D texture surface with the fractional differencing parameters c, d and the fre- 
quency parameters ol, Q, respectively, and it has the property of being flexible enough to 
synthesize both long-term and short-term correlation structures of random texture depending 
on the values of the fractional differencing parameter c and d. (More detailed discussion on 
FDP model will be given in chapter 2.3.) Since the object is described by a model involving 
several free parameters and the values of these parameters are determined directly from its 
projected image, it is possible to extract 3-D information and texture pattern directly from 
the given intensity values of the image without any pre-processing. Thus, the cumulative 
error obtained from several pre-processing stages can be minimized. For estimating the 
parameters, a hybrid method which uses both the least squares and the maximum likelihood 
estimates is applied and the estimation and the synthesis are done in frequency domain based 
on the local patch analysis. By using this model, the integrability problem which might 
occur in spatial domain analysis can be avoided, because only one inverse Fourier transform 
needs to be taken at the end of procedure to get the whole image. 

The organization of this paper is as follows. In Section 2 we introduce the image model 
i(11,12) which is obtained by superposing the deterministic function x(ll ,12) and the random 
function y(ll,12), and the relationship between different directions of 3-D surface. Section 
2.1 gives a scheme for estimating the illumination direction. The modified reflectance map 
function x(ll ,12), and the orthographically projected Fractional Differencing Periodic func- 
tion y (11 ,lz) are introduced in sections 2.2-2.3. Section 3.1 outlines the estimation scheme 
for the parameters in the composite model. Section 3.2 discusses some simulation results 
carried out to demonstrate the performance of the proposed algorithm, followed by Section 4 
which concludes the paper. 

The detailed paper with the same title will appear in the IEEE Transactions on Pattern 
Analysis and Machine Intelligence, October 199 1. 
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AND TIME EVOLUTION IN MANY-PARTICLE SYSTEMS 
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ABSTRACT. The study of time and frequency dependent behavior in quantum 
many-particle systems represents one of the most significant developments in statistical 
physics in recent years. Fundamental approaches involve solving the Heisenberg equation 
of motion for a given dynamical variable and then evaluating an ensemble average at two 
different times. Most interesting and difficult regimes are long times and low frequencies 
where standard perturbative techniques become inapplicable. Recent advances have shown 
that recurrence relations and continued fractions provide sounder approaches to solving 
these problems. Progress made at the University of Georgia, supported by the ARO, will 
be described. 

I. Phvsical Problem 

We shall consider the following physical systems: (i) Coupled spins. (ii) Interacting 

electrons. (iii) Classical harmonic oscillator chains. The spin systems are models of 

magnetism. The electron gas is a model of metals as well as a model of celestial bodies, 

e-g., white dwarfs. The harmonic oscillator chains are models of lattice dynamics, e.g., 

phonons, and also of defects and impurities in solids. These physncal systems are denoted 

by the Hamiltonian H. At the outset we shall assume that the Hamiltonian is Hermitian, 

H+ = H, where + denotes Hermitian conjugation. Let A be a dynamical variable of 

interest. For example, A = ;i, where si means the spin at site i; A = pi, where pi.is the 
N N 

+ momentum of the particle at site i; or A = gk = Xq a aq-k, where a+k and ak are, 

respectively, the creation and annihilation operator at wave vector k. In general, H is a 

functional of the dynamical variable A, H = H(A). Since we are interested in the behavior 

of macroscopic bodies, the thermodynamic limit (N + m, V + m, but N/V const, where N is 

the number of particles and V is the volume containing these particles) will always be 

implicitly implied. 
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11. Canonical A ~ ~ r o a c h  to Noneauilibrium Problems 

Conceptually the canonical approach is very simple. One first obtains the time 

evolution of A by solving the equation of motion 

where [ , ] means a commutator or a Poisson bracket depending on whether H refers to a 

quantum or a classical system, and L is the Liouville operator. Given the solution for A(t), 

one next constructs the autocorrelation function of the following form: 

where one may take A(t=O) = A to be the initial condition, and the angular brackets to 

mean an ensemble averaging over all possible states of H in the sense of statistical physics. 

That is, 

where Tr means a trace or a sum over the states of H, f l  is the inverse temperature. 

The autocorrelation function p(t) is physically significant. It contains 

thermodynamic information such as irreversibility and ergodicity. The Laplace transform 

of p(t) is the scattering function S(w),  where w is the frequency, which may be measured by 

means of, e.g., neutron beams or X-rays or laser. Hence, through cp(t), one can determine 

what microscopic structures give rise to observed macroscopic properties. One can thereby 

trace macroscopic behavior (e.g., plasma oscillation) to its microscopic origin. A word 



about the conventional approach. As we shall see, the canonical approach is not easy to 

realize. The conventional approach is to obtain the autocorrelation function p(t) directly 

by solving some phenomenological equations for it, e.g . , the Langevin equation. Ordinarily 

one must employ approximate techniques such as mean-field, stochastic or other similar 

theories. While very useful and in many ways necessary, the solutions given by the 

conventional approach have difficulty of being linked to the basic problems posed 

through H. 

Perhaps the best known realized example of the canonical approach is the solution 

of nearest-neighbor coupled classical linear harmonic oscillator chains.' One can obtain 

the time evolution of the momentum of a tagged particle from the canonical equations of 

motion and thereby the momentum autocorrelation function. The standard method is to 

subject H to a unitary transformation: H + fi = U H U-l, where U is unitary operator 

which diagonalizes H. This process is equivalent to converting lattice coordinates of the 

oscillators into normal coordinates. There is a price to be paid for doing this 

transformation. If, for example, one wishes to follow delocalization of a perturbation 

initially imparted to the tagged particle, say at t = 0, it is virtually impossible to do so in 

the space of normal coordinates. 

This kind of transformation is ad hoc. One must be able to find a unique 

transformation for each problem. Hence, it is not easy to extract common features of 

successful solutions. This author has developed a new canonical method which avoids the 

transformation route.2 The solutions obtained from this new method possess certain 

dynamical features. They may be classified so as ,to provide a universal picture of 

dynamical processes, 



111. Method of Recurrence Relations 
. - 

The method of recurrence relations is a general method, developed in the early 

2 1980s. It is applicable to all Hermitian systems with both finite or infinite degrees of 

freedom. The formal solution to the time-evolution eq. (1) may be given as 

where L is the Liouville operator. One can imagine that the time evolution of A describes 

a trajectory in a vector space. Let A(t) be a vector in this space and also 1 1  All denote the 

norm of A. If IIA(t))) = IlAll, the length of the vector A(t) is an invariant of time. Since H 

is Hermitian, the Bessel equality is satisfied. The dimensionality d of this space may be 

finite or infinite, depending on L. If d = 2, for example, A(t) represents a plane rotation in 

this space. The time evolution must necessarily be of oscillatory motion. As the 

dimensionality increases, the motion of A in this vector space evidently becomes more 

complex. The nature of the motion is, however, bound by the geometry of the vector 

space. 

A linear vector space is spanned by its basis vectors, say Ifv}, v = O , l ,  ..., d-1. Let 

these basis vectors be orthogonal, i.e., (fv, f,' ) = 0 if v' # v. Given these basis vectors, we 

can restate the qualitative statement made about the time evolution of A as follows: 

where av(t) are some time-dependent real functions. The above orthogonal expansion is 

still without any physical content since the vector space has not been realized. But we 

shall see that given a realization of the vector space, there are two parameters--only 

two--which will completely describe the physical nature of A(t). They are the 



dimensionality d = Ifv} and the 'thypersurfautyt' u = {IIfvI)} or, more usefully, u = 

If the vector space is an abstract one, one may obtain the basis vectors by the 

Gram-Schmidt orthogonalization process, sometimes known in physics as the projection 

operator technique of Mori-Zwandg. If the space is a realized one, then the 

Gram-Schmidt process is not a natural choice. It is, in fact, a clumsy one. A space is 

realized if the inner product for the space is defined. Physical problems are by nature not 

cast in an abstract space but in some realized space. The appropriate inner product was 

discovered by ~ u b 0 . l  If X and Y are vectors, the inner product of X and Y is given by 

where = kT, T temperature, k Boltnnannys constant. Observe that if [X,H] = 0, 

which represents "fluctuations" in thermodynamics, e.g., susceptibility, specific heat. 

Through the above given inner product, one begins to see that the space realized by (6) is 

indeed physically meaningful. The inner product (6) is known as the Kubo scalar product 

(E). The connection between the autocorrelation function and the KSP is self-evident. 

One can now find the basis vectors which span the physical space realized by the 

m. It was found that these basis vectors are connected by a recurrence relation, 4 

where f = i[H,fl, DV = Ilfvll/llfv-lll, and the boundary conditions f-l = 0 and Do = 1. 



Equation (8) will be referred to as RR I. Now, of d basis vectors, there is always one 

degree of freedom. If one exercises that freedom by choosing f,, = A, the dynamical 

variable, RR I implies that the remaining d-1 basis vectors can be obtained one by one: 

fo + fl + f2 ... This process continues until the final one which vanishes. This determines 

the dimensionality d if it is finite. If the process continues indefinitely, the realized space 

has i d n i t e  dimensions. Our choice fo = A implies that ao(t=O) = 1 and av(t =0) = 0, 

v 2 1. Where is the physics contained here? It is in the hypersurfacity u = {D,}, which is 

a function of H and p. 

Returning to the orthogonal expansion ( 5 ) )  we next focus on {av(t)] the coefficients 

of expansion. We know at once from the reality and time reversal symmetry conditions 
* 

that av (t) = av(t) and av(-t) = av(t). The equation of motion (1) and RR I imply that 

there is also a recurrence relation for {av(t)). In fact, one finds that 4 

with a- 5 0. Equation (9) will be referred to as RFt 11. Given these two recurrence 

relations, the orthogonal expansion (5) .  represents the solution of the equation of motion 

(1). Since aV2s are functions, they are physically measurable quantities. To illustrate this 

point, let us consider the simplest case, which is d = 2. For a two-dimensional vector 

space, according to our scheme: d = {f,,, fi) and u = {Dl}, a l l  other quantities being zero. 

Hence, from eq. (91, we obtain 

Equations (10a,b) are solved at once; 

4 08, 



a. = cos wt 

al = sin & / w ,  

where w2 = Dl. Note that 

which is a statement of Bessel's equality. This simplest example turns out to be none too 

trivial. It represents the basic structure of the dynamics for mean field or RPA theory! 

IV. Formal Properties 

There are a number of useful properties contained in the orthogonal expansion (5) 

now that our space is the physical space. Exercising one degree of freedom at hand, we 

choose as before fo = A, where A is the dynamical variable. Then, 

which we recognize as the relaxation function of linear response theory.3 The memory 
2 fanction M(t) can be shown to be related to the relaxation function R(t). Let gy(z) = 

3 [a,(t)] where Y is the Laplace transform operator. If 9 is applied to RR 11, we obtain: 

N rV 

1 = a0 + D~ a1 (144 

N N 

ay-1 = $ 4" Dv+l aV+l 9 l < v < d - 1 .  (14b) 

Equation (14a) represents the fluct uation-dissipation theorem in linear response theory. 
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The two equations (14a,b) imply that 

a continued fraction of Stielt jes, first derived in the statistical physics context by ~ o r i . ~  
1 By applying the inverse transform S on (16), we can obtain ao(t). Given ao, we can 

obtain al, a2, etc., successively by the application of RR 11. 

Also, we note that the formal structure of RR U is restrictive. It forbids certain 

types of functions for {av(t)}. Excluded are, for example, the simple exponential and the 

entire class of the orthogonal polynomials. Allowed or admissible are the Gaussian, 

circular functions, hyperbolics, the Bessel functions of integer and half-integer orders, the 

hypergeometric function of an even argurdent, the elliptic functions. 

The method of recurrence relations is distinguished from noncanonical approaches. 

It does not directly solve the equation of motion; instead it solves the equation of motion 

by finding admissible solutions. It requires two essential ingredients: the dimensionality 

and hypersurfacity. These two quantities allow a unique way of classifying physical 

solutions. The method is canonical in its approach to dynamics, i.e., both A(t) and {av(t)) 

are obtained. Hence, the solutions are richer. The method has recovered, as far as we 

know, all the existing exactly solvable problems, usually much more simply. 6 

V. Phvsical ~ ~ ~ l i c a t i o n s  

One simple application is afforded by the problem of time evolution in a classical 

nearest-neighbor coupled harmonic oscillator monatomic chain. Let N be the number of 

atoms in the chain, taken to be an even number, which will be allowed to grow indefinitely. 

We shall impose periodic boundary conditions on the chain for simplicity. It has been 

7 shown that for this problem, the two key quantities are: 



There is a physical dimension in u, jw, where k is the spring constant and m the mass of 

an atom, but it has been set to unity. 

The front-end symmetry in a i s  remarkable (see 17c). I f d  < m (i.e., N < m), the 

relaxation functions av(t)'s are all circular functions. It means that there is a finite 
V. 

recurrence time or Poincare cycle. If N -, m, hence, d -, m, the symmetry in u is destroyed 

It sets up irreversibility in the time evolution behavior. Ours i~ an example of 

irreversibility in a Hermitian system. The necessary (and probably sufficient) condition for 

irreversibility is thus d -, m (as a result of N -, m). We have examples where N + m does not 

necessarily signify d + m. But in this problem, d and N are simply related. See (16). It 

indicates that a perturbation imparted to a tagged oscillator atom propagates atom to 

atom until the last one and then it is feflected if N is finite. It never returns if N is not 

finite, inducing irreversibility. 

If N -, m, using (17d) in (15), we obtain 



Hence, 

where J, is the Bessel function of order v = 0.1,2, ... The square root singularity (18) 

indicates that there are two Riemann sheets in the plane of z. The physical significance of 

these sheets appears if one makes the mass of the tagged oscillator atom, say mo, different 

from that of the rest. Let s = m/mo. One then obtains, 

which differs from the hypersurface of a pure monatomic chain only in the first member. 

As a result, 

- 1 where p = s - 1. Except when p = 0, 1, there is now a simple pole in addition to the 

square root ,singularity. If p < 0, the simple pole lies in the "physical" sheet; if p > 0, the 

pole lies in the "nonphysical1' sheet, The two sheets are distinguished when one obtains 

ao(t) from (21) via the inverse transform. One takes the physical sheet only. The singulk 

function (21) is closely related to a function which appears in the Joukowski transformation 

in the theory of aerofoils. 

VI. Discussion 

Space limitation does not permit us to give a detailed discussion of our work on a 

diatomic chain here. It suffices to mention that one can obtain d and a as described for a 



monatomic chain. If N + m, d -, m as before. The elements of the hypersurface are no longer 

constant (i.e., periodicity of I), but now they form a set of a periodicity of two, i.e., 

where a and b are certain mass parameters. The analytic structure of the resultant iO(z)  is 

evidently richer than that for a monatomic chain. There are in fact additional finite 

branch lines. One can obtain the autocorrelation function in various regimes of the mass 

parameter . 

Other limiting cases (e.g., next n.n., constant-coupled h.0, chains) may also be 

studied in this manner. Delocalization of an excitation in these models can be 

straightforwardly determined by the method of recurrence relations. One particular 

advantage of this method is its ability to establish dynamic equivalence. We mention that 

such an equivalence between h.0. chains and a 2D quantum electron gas at long 

wavelengths was recently established. 7 
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ABSTRACT Using Stroh's formalism simple explicit expressions of Green's 
functions for anisotropic elastic half-spaces and bimaterials subject to line forces and line 
dislocations are presented. One of the novel features is that, knowing the Green's function 
for an infinite space, Green's functions for half-spaces and bimaterials can be written down 
immediately with very little derivation. The other novel feature is the physical 
interpretations of Green's functions. The Green's function for a half-space consists of ten 
Greenls functions for the i d n i t e  space. One of the ten Green's functions has its 
singularities located in the half-space where they are prescribed. The other nine represent 
image singularities which are located outside of the half-space not occupied by the 
material. The locations of the nine image singularities as well as the nature of the 
singularities are presented explicitly. For bimaterials which consists of two anisotropic 

, half-spaces bonded together, there are nine image singularities each for the two materials. 
Again the locations and the nature of the singulairities are presented explicitly. We dso - 

suggest graphical solutions for finding the locations of these singularities. Since the Green's 
function for an infinite space has a real form solution, this implies that Green's functions 
for half-paces and bimaterials can have a real form solution. The image singularities for 
degenerate materials for which isotropic materials are a special case are discussed briefly; 
An anomaly is that the image singularities for degenerate materials are not simply Line 
forces and line dislocations. Although the Green's functions obtained here are for line 
forces and line dislocations, the results can be applied to Green's functions for other types 
of singularities such as concentrated couples. In particular, the locations of image 
singularities presented here are independent of the type of singularity concerned. 

EXTENDED SUMMARY. The Green's function for two-dimensional 
deformations of an infinite anisotropic elastic material subject to a line dislocation has been 
obtained in [1-5]. Further developments of Green's functions to include line forces were 
given in [6]. Green's functions for an infinite medium have also been found for anisotropic 
composite spaces [7] and for the more general case of angularly inhomogeneous anisotropic 
materials [8,9]. 

Green's functions for anisotropic half-s aces and bimaterials have been considered 
by many investigators (see 10-17 , for exarnplef. In the earlier work Green's functions for I, h half-spaces are obtained om t e Green's function for an infinite space by .adding a 
distribution of forces along the surface of the half-space so that the net surface traction 
vanishes. Likewise, Green's functions for bimaterials are obtained by adding a distribution 
of forces and dislocations along the interface to maintain the continuity of displacement 
and surface traction at the interface. With this approach the solution is not explicit in 

T 
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that the final solution requires integration of the distributed forces and dislocations along 
the free surface or the interface. Progress has been made recently in obtaining Greenls 
functions. The simplest solutions of Green's functions for half-spaces and bimaterials 
appear to be the ones obtained by Suo [15] using the methods of analytical continuation. 
However, Suo did not give the solution in full, only in an abbreviated form. A 
breakthrough was made by Hwu and Yen [18] whose approach for finding Green's functions 
for an elliptic hole in an infinite anisotropic medium suggests that one can-write down 
Green's functions for half-spaces and bimaterials immediately with little derivation. This 
is one purpose of this paper. The other purpose of this paper is to interpret physical 
meanings of the Green's functions so obtained. 

The basic formalism of Stroh [2,19-211 is outlined in Section 2 and some identities 
which are needed in the sequel are presented in Section 3. The Green's function for an 
infinite space due to a line force and a line dislocation is given in Section 4 which serves as 
the bases for the rest of the paper. Section 5 deals with the surface Green's function for a 
half-space while the Green's function for a half-space in which the singularities are located 
inside the half-pace are presented in Section 6. It is shown that the Green's function for a 
half-space contains nine image singularities. The locations and the nature of these image ' 

singularities are given explicitly. Graphical solutions of the locations of the image 
singularities are presented in Section 7. Section 8 studies Green's functions for, bimaterials 
where it is shown that there are nine image sin ularities each for the two materials in the 
bimaterials. The locations and the nature o ! these image singularities are also given 
explicitly. In the last section we discuss briefly the image singularities of Green's functions 
for degenerate materials. We also discuss the generality of the methods presented here 
which can be applied to Green's functions for half-spaces and bimaterials due to other 
types of singularities. 
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THE COMPUTATION OF CRYSTALLINE MICROSTRUCTURE* 

MITCHELL LUSKINt, AND CHARLES COLLINSS 

Abstract. We describe a tw+dimensional model of crystalline martensitic rnicrostmctute, and we 
present a new visualization of computational results for the finite element approximation of aolution~ to 
the variational problem with microstructure on a sequence of refined meshes. 

1. Introduction. We present computational results for a two-dimensional model of 
crystalline martensitic microstructure which was proposed by Ericksen and James. This 
tw*dimensional model has the property that the energy density is frame-indifferent and 
has two symmetry-related energy wells. Variational problems of this type do not always 
attain their minimum value for any admissible deformation [BJ2]. Rat her, the solution 
must often be described in terms of a microstructure since the deformation gradients of 
minimizing sequences can have oscillations with amplitude which remains fmi te and with 
wavelength which converges to zero. 

A mathematical theory of microstructure has been developed during the past several 
years to describe solutions to these variational problems [BJl,  ChKi, El, E2, J, Ki, KO]. 
This theory also gives a recipe for the evaluation of macroscopic properties of crystals with 
microstructure. 

Computations for a three-dimensional model for InT1, a shape-memory alloy with 
symmetry-related (martensitic) variants, were given in [CoL]. These computations suc- 
cessfully obtained microstructure on the scale of the grid and the austenitic-martensitic 
interface. We have found that the computation of three-dimensional deformations for crys- 
tals with symmetry-related microstructure requires large amounts of computing time. We 
have developed the t-dimensional model so that we can more quickly experiment with 
our algorithms and so that we can more easily do computations which are relevant to the 
development of the continuum theory. For instance, the two-dimensional model has been 
used to study complex microstructure involving the mixture of more than two deformation 
gradients [Co]. 

The development of a theory to rigorously analyze the numerical approximation of 
microstructure in crystals was begun in [CoKiL, CoL] and has been further developed in 
[ChCo]. These concepts have also recently been applied to the numerical approximation 
of the fine scale structure of the magnetization field of some ferromagnetic materials [LM]. 

*This work is part of the 'hansitions and Defwts in Ordered Materials Project and was supported 
in part by the ARO through grants DAALOS88K-0110 and DAAL03-89G-0081, the Army High Perfor- 
mance Computing Research Center, -the Cray Reseatch Foundation, and by a grant from the Minnesota 
Supercomputer Institute. 

tSchml of Mathematics, University of Minnesota, Minneapolis, Minneslrta 55455. 
$Department of Mathemati-, University of Michigan, Ann Arbor, Michigan 48109. 



. . 2. Two-dimensional model. The bulk energy of a tw+dimensional crystal is mod- 
eled by 

E(Y) = / ~(vY(X), 8) d+ - 
a 

where S1 c R2 is the reference configuration for the crystal, y(x) : 0 + R2 is the deforma- 
tion, kJ is the temperature, and 4 is the energy density. 

We use the energy density proposed by Ericksen and James which is given by 

4(F, 8) = K~ (Trace C - 2)2 + R ~ C &  + n3 
((ell ; ~ 2 2 ) '  - 9' 

where 

is the Cauchy-Green strain tensor; ~ 1 ,  K Z ,  and ~3 are elastic moduli; and E is the transfor- 
mation strain. 

The energy density4 is frame-indifferent, i.e., 

for any rotation R and 4 has the symmetry group of the square, i.e., 

)(FR,, 0) = +(F, 8 )  for 11 = 712, n, 3 ~ 1 2  

where R, is the rotation matrix with angle q 

COST - sinq 
R" ( sinq cos q 

The energy density 4(F, 9) attains its minimum value at the symmetry-related deformation 
gradients F ~ F  = Ui or F ~ F  = Uf where 

We note that Uo and Ul are symmetry-related since 

The unstressed austenitic phase is represented in this model by the deformation gra- 
dient F = I where I is the identity matrix, and the unstressed' martensitic phase is 



represented by the symmetry-related deformation gradients F = Uo and F = Ul which 
represent different "variants" of the martensite. We assume that the temperature tJ is held 
fixed in the body below the transition temperature between the austenitic phase and the 
martensitic phase. At such a temperature the unstressed martensitic phase should be a 
global minimum of the energy density while the unstressed austenitic phase should be a 
local minimum of the energy density. Since the purpose of the two-dimensional model is 
to provide a model to test the effectiveness and efficiency of our algorithms for the com- 
putation of martensitic microstructure, we have simplified our energy density by removing 
the local minimum at unstressed austenitic phase F = I. 

We chose the values of the material coefficients to resemble the elastic moduli and trans- 
formation strain for InTl which has a cubic austenitic phase and a tetragonal martensitic 
phase. To simulate the properties of the the-dimensional energy density for InTl pro- 
posed by Ericksen which has a cubic symmetry group [El, E2], we have constructed the 
two-dimensional energy density 4 with the symmetry group of the square and we have 
used the moduli 

K1 = 10, 62 = 3, K j  = 1, E = .l. 

The transformation strain e is taken to be larger than the physical strain to enable numer- 
ical computations to be done on a coarser grid. We have also represented the tetragond 
martensitic phase by a two-dimensional rectangular phase. 

For an unstressed solid the above model allows the existence of interfaces which sep- 
arate different variants of martensite. These interfaces or "twin lines" are given by lines 
across which. the deformation is continuous, but across which the deformation gradient is 
discontinuous. A continuous deformation y(x) exists such that 

VY(X) = Uo where x - n > 0, 

Vy(x) = RcUl where x - n < 0 

if and only if 

for some angle ( and some vector a. The set of solutions to (1) is given by 5 such that 
cos c = JS, sin c = k c ,  and 

Thus, there are two possible families of parallel interfaces. 

For P ( s )  taking only the values 0 and 1 the continuous deformation 



has discontinuous deformation gradients on lines orthogonal to n since 

VY(X) = Uo where p(x - n) = 0, 

Vy(x) = RCUl where p(x . n) = 1. 

It follows that &(Vy(x)) = 0 for all x E 52. 

We recall that for any 2 x 2 nonsingular matrices Vl and Vz such that the eigenvalues 
of (v~ v.~)~(v~ V;') satisfy X1 < 1 < X2, there exists a rotation R and nonzero vectors b 
and m such that [B Jl] 

R K = & + b @ m .  

In particular, there exists a rotation R and nonzero vectors b and m such that 

Now (2) implies that the two-dimensional model allows a continuous deformation with an 
interface separating a region of austenite F = RI from a region of martensite F = Uo. 
However, the three-dimensional model of InTl does not allow an interface to separate a 
region of austenite from a region containing a single variant of martensite, and this is con- 
firmed by experimental observations. Rather, for the three-dimensional model an interface 
can separate regions of austenite and martensite only if the martensitic region is a fme-scale 
mixture of more than one variant of martensite [BJl], and this is also confinned by experi- 
mental results. By constructing our two-dimensional energy density so that F = I is not a 
local minimum, we have eliminated the possibility of a spurious interface between regions 
of aus t enit e and of single-variant martensit e for a two-dimensional unstressed crystal. 

The goal of our computations is to compute the displacement, yh, which minimizes the 
bulk energy among all admissible finite element displacements on a mesh with length scale 
h. The deformation on the boundary of the body is constrained to equal 

There does not exist a deformation which has the minimum energy E = 0 and which 
sati&es the boundary conditions [BJ2]. Rather, if E(y,) -+ 0 as n -+ w for a sequence of 
deformations satisfying the boundary conditions, then the amplitude of the oscillations of 
Vy,(x) remains finite as n 4 oo, but the wavelength of the oscillations becomes arbitrarily 
small. The "microstructure" solution to this problem is unique, though, and is given by 
the mixture of Uo and RCUl in equal proportions [B J2]. 

We can give an analytic treatment of the microstructure for this problem by defining 

0 if 27-11 < x < 2m + 1, for m an integer 

1 if 2rn - 1 < x < 2m, for m an integer 



and 

Ps(x) = P(xI6). 
Then 

has minimum energy (&(y6) = O), but y6(z) does not satisfy the boundary conditions (3). 
However, 

uniformly as 6 -, 0. It follows that we can modify ys(x) near the boundary to construct 
a deformation, &(x), which satisfies the b o u n d q  conditions (3) and such that 

The scale of the microstructure for C6(x )  is 6. 

3. Two-dimensional computations. We used continuous, bilinear bite elements, 
and we developed an optimization algorithm based on the conjugate gradient algorithm 
[Co]. The crystal was oriented so that the lines of discontinuity of the deformation gradient 
are diagonal to the mesh-the most difficult test. 

In each local element, we evaluate the deformation gradient F = Vyh at the center, 
and we shade the area in the local element to display the function 

where 11 All = C A$. In Figure 1 we see the results of our numerical experiments with 
the boundary conditions (3) where sin ( = - E  for mesh lengths h = 1/16, h = 1/32, 
h = 1/48, and h = 1/64. The element is white when F=F = Ut , the element is black 
when F=F u?, and the element is colored varying shades of gray to denote the distance 
of the element deformation gradient to one of the energy wells. 

Our algorithm has successfully computed a microstructure on the scale of each suc- 
cessively finer mesh. Since the computed microstructure is not completely regular, we 
have actually computed a local minimum of the finite element optimization problfnn. Nev- 
ertheless, our computed local minimum has small enough energy so that it exhibits the 
microstruct use of the global minimum. 

The number of local minima becomes arbitrarily large as the mesh is r ehed  since 
we can have local minima with oscillations of arbitrarily small wavelength and since the 
number of possible "defectsn where the microstructure is irregular can become arbitrarily 
large. 

The video [CoLR] shows the path of our conjugate gradient algorithm to a local min- 
imum. The microstructure organizes itself so that the energy density is small in disjoint 
regions. As these regions coalesce or approach the boundary, the unique microstructure 
that is compatible with the boundary conditions is chosen throughout the entire crystal. 



Figure 1. Deformation gradient of yh(x) for meshes with scales 
h = 1/16, h = 1/32, h = 1/48, and h = 1/64. The deformation 
gradient at the midpoint of each local element is displayed. The local 
element is shaded according to the value of $ ( F ) .  
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Abstract 

In this note we discuss a d y n d c a l  systems approach to a phase transition prob- 
lem based on the Korteweg theory of capillarity. We consider the existence of a 
global solution to show that we have a dynamical system. We discuss the stability 
and bifurcation analysis of stationary solutions and then we study the connecting 
orbit problems in the semiflow. The connection matrix is a useful tool to discuss 
qualitative aspects of the dynamical behavior of solutions. W e  also dicuss the slowly 
varying solutions and preliminary numerical results for this are given. 

1 Introduction. 
In this note we study dynamical aspects of the following system of parabolic equations 

where x E [O,1] and the boundary conditions are given by 

and the initial data are ,given by 

The above system is derived from an equation 

(1-4) ZLtt = Q(u,), + V U x d  - 77Ux,, 

'This work was supported by Army Grant DAAL 03-89-G0088. 



with boundary conditions 

(1.6) uxz(0, t )  = 0, uxx(1, t )  = 0, 
by setting p = Jfutdx and q = u,. Equation (1.4) models a bar which goes through 
a phase transition. The boundary conditions (1.5) show that the bar is under a soft 
loading device. The boundary conditions (1.6) are the natural boundary conditions for 
the corresponding variational problem. The terms with the coefficients u and 7 are called 
viscosity and capillarity terms, respectively. In what follows, we assume that a is given 
by Fig. 1.1. ' In this figure (0, a*] and [p, ca) are c d e d  the a-phase and the P-phase, 
respectively. They correspond to the different phases of the material. 

Figure 1.1 

The capillarity term was first considered by Korteweg [6]. Recently, various effects of 
this term have been discussed, for example, in [I], [2], [3], [7], [a], 

In what follows, we discuss first the existence of global solutions, the stability of station- 
ary solutions and the bifurcation diagram, the connecting orbit problems in the semiflow, 
and the slow motions. We omit most of the proofs, as they will appear in [5 ] .  

2 Existence of a global solution. 

We state the theorem establishing the existence of a global solution to (1.1) and (1.2). 



Theorem 2.1 Suppose a E C3 and that (f(x),g(x)) E H1(O, 1) and are compatible with 
the boundary conditions (1.2). Then there exists a unique global solution (p, q) E H2(0, 1) 
for (1.1) though (1.3). 

Proof: We define the operator A by 

and show that A with the boundary conditions (1.2) is an infinitesimal generator of a 
compact analytic semigroup in L2(0,  1). It should be mentioned that since the boundary 
conditions &e not typical, they cause some difficulty in estimating the eigenvalues and 
the resolvent. Since a is a nonlinear functions of q ,  the semigroup in L2 is not enough. 
Nevertheless, it is possible to show that if the initial data are in H1(O, 1) and satisfy the 
boundary conditions, then for the following iteration 

there is a contraction mapping in H1(O, 1). This gives local existence. Now, we use the 
following equality 

(2.1) E ( ~ ,  d(t) f /t 0 /I 0 u~:z(x, S )  dxds = E ( ~ ,  I)(O), 

where 
1 1  

(2.2) E(P, d ( t )  = / o 15p: + W(p) - Pq + ;d~(x , t )  a x ,  

as the a priori estimate for the H1 norm of ( p , q )  so that the continuation argument is 
possible, and hence we can show the existence of a global solution. 

3 Stability and bifurcation analysis. 

Here, we discuss the stability of stationary solutions and their bifurcations. 

Lemma 3.1 The constant solutions (0, a), (0, P ) ,  and (0,6) are stationary solutions for 
a11 values of 7 > 0. Furthermore, their indices are h((0, a)) = h((0, P ) )  = EO. Namely, 
they are dynamically stable. 

Next, consider the eigenvalue problem corresponding (1 .I) and (1.2): 



Lemma 3.2 The eigenvalues of (3.1) cross the origin horn left to right of the imaginary 
axis at 7 = - d ( S ) / ( n ~ ) ~  as we decrease g. Furthermore zero eigenvdues are simple. 

Lemma 3.3 If u E C3, ~ ' ( 6 )  < 0,  and ~ ~ ' ( 6 )  > 0,  then there is a supercritical pitchfork 
bifurcation at 7 = - u ' ( S ) / ( n ~ ) ~ .  Furthermore, if u ( u  + 6 ) / u  < ~ ' ( 6 )  for a! - S 5 u  5 P - S 
except at u = 0,  then there is no secondary bifurcation along the non-constant stationary 
solutions. 

Theorem 3.4 There exists a global compact attractor A for (1.1) and (1.2). 

The above lemmas and the theorem imply 

Lemma 3.5 If 7 > -a ' (S) / r2 ,  the stationary solution (0 , s )  has one dimensional unstable 
manifold or equivalentely the index is h ( ( 0 , S ) )  = El. 

Combining the above lemmas and the theorem we have .. 

Theorem 3.6 If a E C3, ul(S) < 0, and ~ ' " ( 6 )  > 0,  then the following holds: 
(i) For - a ' ( S ) / ( n ~ ) ~  < 7 < - d ( S ) / ( ( n  - l ) ~ ) ~ ,  (0,S)  is a nondegenerate stationary 

solution and has an n-dimensional unstable manifold. 
(ii) If M ( k f )  denote the non-constant stationary solutions which arise from the bifur- 

cation point 7 = - d ( S )  / ( k ~ ) ~ ,  then M (kf ) are non-degenerate and have k-dimensional 
unstable manifolds. 

4 Connecting orbit problems. 

We now discuss the connecting orbit problem in the semiflow. In the s d f l o w  the con- 
necting orbit means the solutions connecting two stationary solutions, namely, 

lim+--(p, q ) ( t )  = a stationary solution, 

lirnt+- ( p 7  q)  (t ) = another stationary solution. 

To simplify the notation let M(O+) = (0 ,  a ) ,  M ( 0 - )  = (0,  P) ,  and M ( n )  = (0 ,S) .  Then, 
we have 

Theorem 4.1 Given a collection { j * ,  j + la7 j +- 2*, ..., j + rn I * = +or-} and E > 0, there 
exists a solution ( p ( t ) ,  q ( t ) )  of (1.1) and (1.2) and a sequence t 1  > tz > ... > t,-1 such that 

and 

(4-2) 
Furthermore, 

c l ( C ( M ( j  + r*),  M ( j 9 ) ) )  n c l ( C ( M ( j  + i*), M ( j  + s*))) # 8, for 0  5 s < r. 



This theorem establishes that there is always a connecting orbit from a stationary solution 
with higher dimensional unstable manifold to a stationary solution with lower one. To prove 
this we apply the connection matrix to the global compact attractor A whose homology 
index is CO. When there are (212 + 1) stationary solutions, we can show that the connection 
matrix is given by 

M (0") M(l*) M(2") - . - M ( n )  

where 

and 

5 Slow motions 

-In Carr and Pego [4] they have show that if A = B in Fig. 1.1, then for 

there exist slowly varying solutions which are actually exponentially slow. Since our system 
is similar to 5.1), we expect that there are slowly varying solutions. 

In this section we choose P so that areas A and B in Fig. 1.1 are equal. We shall 
showa numerical comparison of (p, q) in (1.1) and (p,, q,) satisfying 

with the boundary conditions for q, given by (1.2b). Notice that p, satisfies the boundary 
conditions (1.2a). 

First we derive (5.2). If the motion is slow, it should reflect as small values in pt. 
Therefore, for an approximate solution we drop pt term from the first equation in (1.1) and 
use qt = p,, to obtain the first equation of (5.2). This equation is a well known semilinear 
parabolic equation with bistable nonlinearity for which the dynamics are well understood. 
Then, horn qt = p,, we obtain the second equation of (5.2). We denote the solution to 



(5.2) by (p,, q,) and study how the difference (p - p,, q - q,) behaves. Set jj = p - p, and 
ij = q - q,. Then, (P ,  q) satisfies 

Since qot is small for the slow motions, this encourages the numerical comparison of (p, q) 
and (PO, q o ) .  

Figure 5.1 The values of qo .  



We now report the preliminary numerical results. We take a(q) = q3 - q, P = 0, 
v = 1.0, and 7 = 0.0001. In Figure 5.1 the values of q,(x, t) with the initial data q,(x, 0) = 
0.1 ccs(2rz)  are given. In Figure 5.2 the values of p with 

are given. In these figures i and j denote x and t variables, respectively. The x variable 
ranges from 0 to 80 and the t variable ranges from 100 to 150. The difference between 
q and q, is given in Figure 5.3. It is interesting to see that the difference is very small. 
Further details of computation will appear in a future publication. 

u 

Figure 5.2 The values of q. 



Figure 5.3 The difference between q and q,. 

References 

[I] Andrews, G. and J.M. Ball, Asymptotic behaviour and change of phase in one- 
dimensional nonlinear viscoelasticity, J. Diff. Eqns. 44 (1982), 306-341. 

[2] Carr, J., M.E. Gurtin, and M. Slemrod, One dimensional structured phase transitions 
under prescribed loads, J. Elasticity 15 (1985), 133-142. 

[3] Carr, J., M.E. Gurtin, and M. Slemrod, Structured phase transitions on a finite in- 
terval, Arch. Rat. Mec. Anal. 86 (1984), 317-351. 

[4] Carr, J. and R.L. Pego, Metastable pat terns in solutions of ut = t2u, - f (u), Comrn. 
Pure Appl. Math. 42 (1989), 523-576. 



[5] Hattori, H. and C. Mischaikow, A dynamical systems approach to a phase transition 
problem, to appear in J. Diff. Eqns. 

[6] Korteweg, Sur la forme que prennent les kquations des mouvement des fluides si l'on 
tient comple des forces capillaires par des variations de densite, Arch. Neerl. Sci. 
Exactes Nat. Ser. 11 6 (1901), 1-24. 

[7] Serrin, J., Phase transition and interfacial layers for van der Waals fluids, in "Proceed- 
ings of SAFA lV Conference, Recent Methods in Nonlinear Analysis and Applications, 
Naples, 1980" (A. Carnfora, S. Rionero, C. Sbordone, C. Trombetti, Eds.) 

[8] Slemrod, M., Admissiblity criteria for propagating phase boundaries in a van der 
Waals fluid, Arch. Rat. Mech. Anal. 81 (1983), 301-315. 





Energy Dissipation in an Elastic Material Containing a Mobile Phase 
Boundary Subjected to Concurrent Dynamic pulses1 

Jiehliang Lin and Thomas J. Pence 
Department of Metallurgy, Mechanics and Materials Science, 

Michigan State University, 
East Lansing, MI 48824- 1226 

Abstract: We consider the energetic behavior of a phase boundary that is sub- 
jected to concurrent dynamic pulses, one from each side, in the event that the 
phase boundary motion is maximally dissipative. The total energy loss is con- 
trasted to that which would occur if the two pulses were not concurrent. 

1. Introduction 
Stress-induced phase transitions in solids can be modeled in a continuum elasticity setting 

by means of strain energy density functions that are not convex. In one spatial dimension this 
gives rise to stress-strain laws that are not monotonic [1975E]. Using this framework, it has been 
shown that an acoustic pulse impinging on a pre-existing stationary phase boundary within such a 
material gives rise to both a reflected pulse and a transmitted pulse [1991P]. A notable feature of 
the purely elastic theory is that it alone is not sufficient to determine the outcome of such a pulse1 
phase boundary encounter, allowing instead for a family of possible solutions; in fact this family 
can be parametrized by the speed at which the phase boundary moves during the encounter. This 
state of affairs, however, can be rendered well-posed by augmenting the theory with an additional 
criterion specific to phase boundary motion which has the effect of singling out one member of 
the family of possible solutions. These include criteria which capture kinetic effects [19877, 
[1990G], [1991A], impedance effects [1991P], dissipative effects [1980Jl, [1986H], [1991PP], or 
other phenomena not accounted for by the purely elastic theory [1983HJ, [1991TJ. 

Understanding the large-time asymptotic dynamics of any such process is complicated by 
the geometric increase in the number of pulses with time due to the spawning of both a reflected 
and a transmitted pulse at each pulselphase boundary encounter of the reverberation process 
[ 199 lL] . In addition, any such process will h general eventually give rise to a situation in which 
pulses impinge on the phase boundary from both the front and the back. Our purpose here is to 
consider this concurrent pulse problem. In the next section we state the problem and display the 
family of solutions as parametrized by the phase boundary speed. Then, following [1991PP], we 
determine in Sections 3 and 4 the particular solution that is maximally dissipative. We then con- 
sider the following question: 

How does the total energy loss for a concurrent pulse problem governed by a maximum dissipa- 
tion rate criterion (MD.C.) compare to the combined energy loss for two subsidiary problems: 
one involving only the pulse which impinges from the front (governed by M.D.C.), and the other 
involving only the pulse which impinges from the back (also governed by M.D.C.)? 

1. Supported by the U.S. Army Research Office under contract DAAL03-89-G-0089. 
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In Sections 5 and6 we show that the former is greater than the latter in the event that both incorn; 
ing pulses are of the same sign (with respect to the ambient), but that the latter is greater than the 
former in the event that they are of opposite signs. 

2. Families of Solutions to the Concurrent Pulse Problem 
Let z, y and v denote respectively stress, strainand particle velocity. Following [1991P], we con- 
sider a layer, Oath, composed of an elastic material whose stress-strain behavior in one dimen- 
sion is given by 

where c and d are constants and 2, (y) is a smooth decreasing function that renders 9 (y) continu- 
ous. The layer is assumed to be initially prestressed in equilibrium, so that v=0, with a single phase 
boundary at x-so separating high strain phase with 172, in x a o  from low strain phase with l'y, in 
us,. The strain values ya and yb are taken to be the well known Maxwell strains which have the 
geometrical interpretation of cutting off equal areas on the stress strain curve (Fig. 1). An immedi- 
ate consequence is that the initial configuration is one of minimum energy [1975E] for the prevail- 

Fig. 1. Stxess-strain contstitutive response as described by (2.1 . The descending portion of I such a constitutive response function is associated with unstab e material behavior [l975E]. 
The stmn mtervals: [-y~,m], [y~,y,,,], [h, =), correspond respectively to a low stmn phase, 
an unstable phase and a high strain phase. 



ing boundary conditions governing the initial equilibrium configuration. Any subsequent change 
in the boundary conditions will give rise to changes in the strain and velocity fields governed by 
the equations2 

Vx-y,=o,  *z'(y)yx-v,=O. (2.2) 

In particular, we consider a loading condition at x=O that gives rise to a square wave pulse with 
strain y,+Ayl over a time interval tb, and a loading condition at x=h that gives rise to a square 
wave pulse with strain y,+Ay2 over a time interval t,. We shall not concern ourselves with the 
specific loading conditions needed to generate these pulses, nor with restrictions upon Ayl and 
Ayz necessary to ensure compatibility with (2.1) other than to note that these issues can be treated 
in a systematic fashion [1991P]. According to (2.2), each pulse will travel toward the phase 
boundary with speed c; furthermore the right moving pulse has width ctb and particle velocity 
given by -cAyl, while the left moving pulse has width ct, and particle velocity given by cAy2. The 
encounter of such a right moving pulse with the phase boundary is treated in [1991P] on the 
assumption that the encounter ends before the arrival of any pulse from the other side. Our pur- 
pose here, however, is to study such a concurrent encounter. There are four generic cases: (rr), 
(rl), (lr), (10, where (rr) denotes the case where the right moving pulse (with strain increment Ayl) 
encounters the phase boundary first and also terminates last, (rl) denotes the case where the right 
moving pulse encounters the phase boundary first, but the encounter with the left moving pulse ter- 
minates last, and the remaining two cases are defined accordingly. For the remainder of this sec- 
tion, and also for Section 3, we shall restrict attention to the (rf)  case. There are then three distinct 
interaction periods: Ill in which only the right moving pulse encounters the phase boundary, n,,, 
in which both pulses encounter the phase boundary concurrently, and 112 in which only the left 
moving pulse encounters the phase boundary. Figure 2 diagrams these encounters in the (x,t)- 
plane. According to this figure, the following additional assumptions are also implicit in our treat- 
ment: (Al) the phase boundary remains at rest unless acted on by a pulse, (A2) phase transitions 
take place only by movement of the pre-existing phase boundary, and (A3) the phase boundary 
velocity is constant during each of the three.interaction periods and these three phase boundary 
velocities obey 

-c<s, < c ,  -C < s,,, < C, -c<s,<c. (2.3) 

Further discussion of these issues can be found in [1991P]. In addition we have depicted the phase 
boundary as coming to rest after the complete encounter has ended, in  which case the fields return 
to their initial conditions on each side of the since displaced phase boundary. 

In Figure 2, the subscripts T1 and R1 denote the fields in the transmitted and reflected pulses 
associated with interaction period nl. In addition, the (x,t)-domain with combined incoming and 
reflected pulse during the interaction period Ill is denoted by subscript.Sl. A similar convention 
is followed for subscripts 12, R2, and S2 for the pulses associated with interaction period I&. The 
fields associated with the combination of Tl and the incoming pulse characterized by Ay2 is 
denoted by subscript Tli2. Finally, there are four additional (x,t)-domains associated with pulses 

2. Rimes and subscripts denote differentiation in the usual fashion. Note also that we have taken the density 
to be equal to one in (2.2)2. 



Fig. 2. Concurrent encounter of a ri ht moving shear ulse, a left moving shear pulse and a phase boundary, 
The shear strain y and velocity v in kese incoming puysw and the generated pulses are denoted by q v > .  
The characteristic c w e s  are indicated by dashed line segments. 

that arise as a consequence of the concurrent interaction period Il,,; these are denoted by the 
subscripts SIT', R172, TlS2, and TlR2. A consequence of (A3), (2.1) and (2.2) is that the value 
of strain and particle velocity are individually constant on the individual (x,t)-domains associated 
with the 11 symbols TI, R1, S1, Tli2,22, R2, S2, S172, RlT2, TlS2, and TlR2. The correspond- 
ing 22 unknown values for strain and velocity, in conjunction with the three unknown phase 
boundary velocities i,, i,,, , and S,, comprise the unknown quantities in the complete encounter 

problem. Relations connecting these 25 unknown values to the parameters c, yb, y,, Ayl, Ay2 
which characterize the material, initial conditions, and loading conditions follow from the theory 
of Riernann invariants as applied to (2.1), (2.2). In particular, this gives that v-cy is constant on 

any line segment with slope "=c  in the (x,t)-plane provided that it does not cross the phase 
dt 

boundary. Similarly v + q i s  constant on all line segments with slope dX=-c that do not cross the 
dt 

phase boundary. Each of these Riernann invariant conditions generates 8 algebraic equations 
relating {y,v) pairs between contiguous (x,t)-domains; the associated connecting line segments 

are denoted by Kl+, ... K8+ and KI', ..., K8* in Figure 2. Across the phase boundary, the two Rank- 
ine-Hugoniot conditions 



associated with (2. I), (2.2) &e required to hold. These give rise to an additional 6 algebraic equa- 
tions, 2 for each of the 3 interaction periods Ill, I&,,, and IT2. Thus in total there are 22 equations 
relating the 25 unknown values. Regarding the three phase boundary velocities as parameters, the 
22 equations are linear in the 22 strain and particle velocities. The resulting 22x22 coefficient 
matrix is nonsingular provided that none of the three phase boundary velocities i,, icon , and s,, 

take on the values c or -c. Hence (2.3) ensures that the system can be inverted. Certain simplifica- 
tions are achieved in the resulting problem due to various uncouplings (i.e. zero blocks in the 
coefficient matrix). For example { ySl ,vS1 ) and {yT1 ,vn ) can be found from the 2 Riernann invari- 

ant conditions associated with KJ+ and K]', along with the 2 Rankine-Hugoniot conditions associ- 
ated with interaction period Ill. The resulting 22 field quantities are thus found to be given by: 

c (Yb - 7.J Scan 
YTlR2 = Y a + A ~ l +  ' ~ 1 ~ 2  = - cA Yl - 

2 ( i c o n  - C) 

The phase boundary velocities s,, icon , and $, are undetexmined by the above procedure and can 
be regarded as parametrizing all possible solutions. In addition to (2,3), various additional restric- 
tions upon the phase boundary velocities will arise due to the requirement that the strain values in 
(2.5) remain confined to the intervals associated with the different branches of the stress-strain 
relation (2.1). The net effect of these considerations is to generate additional inequality constraints 
beyond (2.3) on the phase boundary velocities. The totality of inequality constraints are not mutu- 
ally exclusive provided that Ayl and by2 are sufficiently small. If, however, Ayl and Ay2 are large, 



then mutual exclusivity may prevail (see [1991P]). We shall henceforth assume that we are deal- 
ing with values of Ayl and Ay2 which do not give rise to mutual exclusivity so that three non- 
empty parametrization intervals, 9 , ,  SCO,, and 9,, exist for the three phase boundary velocities. 

3. Maximally Dissipative Solutions for the (rl)-case 
As mentioned in the Introduction, the freedom to determine the phase boundary velocity allows 
the theory to accommodate additional requirements upon conditions which govern phase bound- 
ary motion. We shall in what follows examine one possible operative condition, namely a maxi- 
mum dissipation rate criterion (M.D.C.). As is well known, the motion of a phase boundary gives 
rise to a change in the total mechanical energy stored in the mechanical fields [1980Jl. In particu- 
lar, if y++s(t)+,t) and y-+s(t)-,t) are the strains directly adjacent to the phase boundary, then the 
energy loss rate, or dissipation rate, is given by 

\r- 
For the concurrent pulse problem, with strains as given in (2.5), one finds that the dissipation rate 
during the three interaction periods are given by 

where use has been made of the special equal area property of the Maxwell strains y, and yb which 
characterize the initial configuration. 

The maximum dissipation rate criterion is equivalent to the entropy rate admissibility crite- 
rion of Dafermos [1973D], which, in the present setting, selects solutions which have the property 
of maximizing D(t). Hence, entering (3.2) with (2.5) and differentiating with respect to the appro- 
priate phase boundary velocity, one obtains the following implicit equations for S, , &,, , and S,: 

Each of the equations (3.3) admits a unique solution obeying (2.3) which we shall denote by 
i:"" , s:,"?, and dim4. It can be shown that these values indeed maximize Dl,  Dm,, and D2 with 

respect to all i,, icon , and i, obeying (2.3). Even though it may or may not be the case that 
.("a) i:"" E 31, sc, E Scorn, and iim4 E S2; we shall assume that these inclusions hold for the remain- 

der of this comm~nication.~ We now introduce normalized phase boundary velocities and pulse 

3. These inclusions will hold if both Ay* and Ay2 are sufficiently small [1991PP]. 
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strain increments as follows: 

(md)  
where subscripted and superscripted quantities such as s,,, are defined in the obvious fashion by 
these same normalizations. Then the maximum values for Dl, D,,,, and D2, which will be 

denoted by D,'"" , DL:?, and D : " ~ ,  are given by :, 

where 

. . - - 
and S (AT) is defined for all real A? as the unique root, within the interval -1 < S = S (A?) < 1, to 
the equation 

4. Maximally Dissipative Solutions for the Concurrent Pulse in General 
The (rr), (Zr), and (10-cases can be treated in a similar fashion. In all cases, formulae (3.5)2 and 
(3.7)2 hold during the genuinely concurrent part of the encounter. If and when a portion of the 
encounter only involves the right moving pulse with strain increment Ayl then (3.5)l and (3.7)l 
hold, whereas (3.5)? and (3.7)~j govern those portions of any encounters that involve only the left 
moving pulse with strain increment A%. In order to determine which of the four possible cases is 
that which occurs, let 

Then one finds that the four cases occur according to 

'("9 > 0, ( r l )  : q > 0, ct, ( c  + sl(md)) ( C  - s::?) - c tb (c  + ~ l ( ~ ' )  (C + s: ," , )  + 2q ( C  - j :md))  ( c +  scan 
(4 ) 

( r r )  : q > 0, ct, ( c  + il(*') ( c  - i:,mnd)) - ctb (C  + s : ~ ' )  ( C  + s,,, + 2q ( c  - s ~ ( ~ ~ )  ( c  + jc(r2) < 0, 

(md) <O, ( l r )  : q < 0, ct ,  ( c  - s2 ) ( c  - if,":) - ctb ( C  - i i m d ) )  ( C  + s:,":) + 2q ( c  + Simd)) ( c  - s,,, 

+" > 0. (11) : q < 0, ct ,  ( c  - i i m d ) )  ( C  - S!dmff) - clb ( C  - Simd)) ( C  + s,!?) + 2q ( C  + i:ld)) ( c  - s,,, 
(4.2) 



5. Energy Loss for the Maximally Dissipative Solution in the (rl)-case ' 
In this section we begin the examination of the question raised in the Introduction. As shown in 
[1991L], this particular question arises in the study of the large time asymptotic dynamics of an 
acoustic reverberation process in which all interactions are governed by the maximum dissipation 
rate criterion (M.D.C.). For the (rl) case discussed in Sections 2 and 3, let c : ~ " ,  t:,", , and t im4 

denote the time duration of the encounters associated with the interaction periods 111, QOn, and 

It2. These quantities are given in terms of iim4 , il,":, and iim" as 

(rnd) 
c t b  ( C  f s i r n 4 )  - 2q ( C  - S1 

. (4 ' 'con = 
C f S1 ( C  + i:m4) ( C  - S,,, 

(ma ,  ) c t ,  ( c  + i : " )  ( c  - ij!?) - clb ( C  + i l m 4 )  ( c  + i';?) + 24 (c -i.,@'") ( c  + c,, 
tim& = 

c.4 ) ( c  -C i y 4 )  (C - i;,"?) ( c  + iZ 
I 

so that the total energy loss for the complete encounter process governed by (M.D.C.) is 

, AE("d) = Dl(md) t l ( m d )  (md)  (""0 +*2(md) ( # d )  
+ D c o n  'con '2 (5 .2)  

We now turn to consider the energy loss which would accompany two subsidiary problems. 

Fig. 3. The (rl) concurrent encounter. 
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The fmt  problem is that in which only the right moving pulse, associated with strain incre- 
ment Ayl, impinges upon the phase boundary. The encounter dynamics areagain assumed to be 
governed by (M.D.C.). The phase boundary velocity and dissipation rate for this problem can 
simply be found by setting Ay2=0 in the previous development; consequently they are given by 

s,'"' and D , ' " ~ .  Similarly, the second problem is that in which only the left moving pulse, associ- 
ated with strain increment Ay2, impinges upon the phase boundary with encounter dynamics gov- 
erned by (M.D.C.). Hence the phase boundary velocity and dissipation rate in this problem are 
given by s:"' and D,'"'. It is, however, important to note that the time duration of the encounters 

are not given by t:"4 and tP4, but rather are each of a longer duration due to the additional inter- 
action time which was taken by the concurrent pulse in the original problem. These additional 
interaction times will be denoted respectively by and and are given by (see Figure 3): 

so that the total energy losses in the two subsidiary problems are given by 

Consequently, the difference in the energy loss between the original problem and the combined 
energy loss for the two subsidiary problems, is given by 

In order to develop a simple expression for r (,, it is convenient to iritroduce 

where td > 0 follows either from tr,"R > 0 or else from its interpretation as a 'projected time' given 
in Figure 3. Substituting from (5. I), (5.3) into (5.5) and using ( 3 . 3 ,  (3.6), (5.6) yields 

where 

In view of (3.7) we define 



Thus the question posed in the Introduction reduces, in the (A)-case, to a determination of the sign 
of a. Now 

2 imd) ; i m 4  : i m d )  
where, for example, (5.10)1 follows from (5.8) since A:, = 0 implies s, = 0, s,,, = s, ; 

while a similar argument gives (5.1012. Let partial derivatives of & be denoted by numerical sub- 
a scripts, e.g. &, (A?, , A?,) = 4 (A?, , A?,) , then (5.10) gives & (0,O) = 0, &, (0,O) = 0, 

3 4 1  
&,(0,0)  = 0, & , , ( 0 , 0 )  = 0 ,  &,(0,0) = 0 ,  while(3.7),(3.8),(5.8),(5.9)gives&,,(0,0) = 2 , s o  
that the origin is neither a maximum nor a minimum and 

We have numerically calculated & (A?, ,A?,) for various pairs (A?, ,A?,) and display the results in 
tabular form and also in the contour plot of Figure 4. 

These numerical results suggest that & > 0 in the &st and third quadrants, whereas & < o in 
the second and fourth quadrants. The final task of this section will be to show that this is indeed 
the case. To this end, we obtain by virtue of (3.7), (3.8) and (5.8) that 

& (A{, AT2) = A:, CI (A$, + ~ 9 2 %  (A?I ~ $ 2 )  7 

where 

Table. Values of & (A'y,. A?,) near the origin. 



-1 -8.8 -0.6 4 -0.2 0 0.2 0.4 0.6 0.8 1 

Fig, 4. Contour plot of & (df1, A?,) near the origin. 

with 

It may be verified from (5.14) that 

lrnd ;md -md ~ r n d  ~ r n d  i m d  ~ m d  ~ m d  

( w, (SI 9scod  ~ 0 .  - 1 < s c o n < S 1 < 1 + )  ( W 2 ( & o n . ~ ) < o +  
r m d  ~ m d  ;md i m d  ;md ;md ;md ~ m d  

wi ($1 *scan) = 0, -1 <scan = S, < l .  
i rnd 2 n d  r m d  ;wid ) i m d  ;md i m d  :md 

7 $con) 3 0, - 1 < ~ 1  <scon<l,  W 2  ( ~ c o n r ~ 2  > 0, - l<sz < ~ ~ , , < l ,  

which in view of (3.7) and (3.8) gives 

i i r , ( ~ y ~ , ~ Y ~ ) < o ,  i f ~ < < 0 .  w ( A ~ , A ~ ) O ,  i f A y l < O ,  

* I ( A ~ ~ , A ~ ~ ) = O ,  i € ~ i ~ = ~ , ] ,  @ ~ ( A ~ ~ , A % ) = O ,  (5.16) [ A ,  A 0 if A< 0, ( A , A O ,  i f A $ > 0 ,  

Hence (5.12) and (5.16) yield 



6. Energy Loss for the Maximally Dissipative Concurrent Pulse in General 
The energy losses for the (rr), (lr), and (11)-cases can be determined in a corresponding way. 

For the (rr)sase one finds that r(r,, the energy loss difference analogous to T,, , is given by 

(ma) (ma) 
r ( r T )  = Dm" 'con - D, (m4~ l l (m4  - L)im4 nfz(md), 

where and ntpn are displayed in Figure 5. We then find that 



Fig. 6. The (lr) concurrent encounter. 

Hence defining Y (A?, , A;,) analogous to b (A?, , A?,) and using (6.31, (3.7), (3.8) gives 

indicating that reflection symmetry about the diagonal line A;, + A;, = 0 transforms the contour 

plot in Figure 4 for & (A?, , A?,) into a contour plot for (A?, , A?,) . In particular, & (A?, , A?,) and 

9 (A?,,A*(~) are each positive in the first and third quadrants, and are each negative in the second 
and fourth quadrants. Wth this background, we now summarize our findings for all df the concur- 
rent pulse cases: 

(rl) : 1 3  
' ( r l )  = t d ( ~ b - ~ a ) 2 b  ( '?l ,~?~)  2). 

( r r )  : 1 3 "  
(,,) = 3 cub - 7.1 '* (A?,. A ~ Z )  9 

(Ir )  : 1 3  ' ( l r l  = 3 c  lc (yb - Y ~ )  ( A ? ~ T A ? ~ )  * 

1 3  
(11): . r ~ m = ~ C ~ b ( ~ b - y d ) 2 ~ ( ~ ~ l , ~ ~ 2 ) .  



0 4  ) 2q (C + 3, 
In the (1r)-case, another projected time t ,  = t ,  + . (4 ) has been introduced (Figure 6). 

c(c -s2  

Thus we conclude that the concurrent pulse encounter sufers the greater energy loss in the 
event that both incoming pulses are of the same sign, whereas the concurrent pulse encounter suf- 
fers the lesser energy loss in the event that the incoming pulses are of opposite sign. 
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In this short note, we list a number of combinatorial optimization problems, among 
them the Traveling Salesman Problem and the Graph Partitioning Problem, that  can be 
represented by a common matrix formulation. This formulation was used previously by 
Brockett t o  study certain geometric matching problems. Although this unified representation 
does not necessarily imply the existence of a unified efficient algorithm to solve all these 
problems, i t  may provide useful insights for a better understanding of the structure of these 
problems. 

I. Introduction 

Several recent papers ([I-31) have investigated the idea of using gradient flows on 

3O(n), the special orthogonal group, to provide a new mechanism for solving certain 

combinatorial optimization problems. The cost functions for these optimization problems can 

be formulated in the following forms: 

As an interesting side observation, note that the set of functions of type (1) or (2) are pivotal 

elements in the representation theory of SO(n). 

In this short note, we list some combinatorial optimization problems that can be 

formulated by such cost functions. The list includes the Assignment Problem (M) ,  the 

Traveling Salesman Problem (TSP), the Graph Partitioning Problem and some routing 

optimization problems. Although this unified representation does not necessarily imply the 

existence of a unified efficient algorithm to solve all these problems, it may provide useful 



insights for a better understanding of the structure of these problems. In Section 5, we 

summarize some results of embedding the AP and the TSP in SO(n). The results provide a new 

perspective on some local search techniques as applied t o  these problems. 

2. T h e  AP, TSP, and Extended Traveling Salesman Problems 

The Assignment Problem is a well known combinatorial optimization problem with 

polynomial time complexity (see [4, 51 for more information.) It can be formulated in the matrix 

form as: 

where P(n) denote the set of n by n permutation matrices. There is an interesting connection 

between the Assignment Problem and the Geometric Matching Problem as was pointed out in 

The Traveling Salesman Problem (TSP) is an NP-hard problem. The problem can be 

formulated as: 

man tr CTP , 
PrT (n) 

where T(n) stands for the subset of P(n) consisting of irreducible matrices, that  is, matrices 

with no non-trivial invariant subspaces. Elements in T(n) are also known as directed tours, 

with the interpretation that  Pij  equals to 1 if and only if there is a directed arc from node i to  

node j. 

Define S, t o  be an n by n matrix of the form: 



It is easy to  verify that  P ~ S , P  is an irreducible permutation matrix if P is any permutation 

matrix. If the cycle ( i l  . . . i , )  denotes the order in which the nodes are visited by a tour, T, 

define P by 

1 i f k =  i j  
0 otherwise 

Then PrSP is the matrix representation of T. Hence, if we let S = S,, then the TSP can be 

reformulated as: 

min tr C~P*SP 
PcP(n) 

There are many combinatorial optimization problems that  can be considered as 

extensions t o  the TSP. Consider the following example of a Two Traveling Salesmen Problem 

with 2 n  cities. The problem is similar to  the TSP, but the cost function in this case is defined 

by the total sum of two weighted tours, and the tours are restricted by the condition that  each 

tour visits n cities and every city is visited by one and only one tour. We can formulate this 

problem similar to the TSP, by using a slightly different S. Define: 

A 

Let S = Sz,. Then this problem can be formulated as: 

It is clear that  one can generalize this concept t o  other extensions of the TSP 

It is interesting to observe that while the AP which is of polynomial complexity has a 

linear cost function representation, the TSP and other NP- hard problems require a second 

order representation. 



3. Graph Partitioning Problems 

Let G = (V, E )  be a fully connected graph with n nodes and weighted edges 

defined by a weight matrix C. Let n l  and n2 be two positive integers such that their sum is 

equal to  n. The Generalized Graph Partitioning Problem is to  find a partition of V into two 

subsets with n ,  and n2 nodes such that  the sum of the weights on the cut edges (that is, edges 

with their endpoints in different subsets of the partition) are minimized. This is a well known 

NP- complete problem with many good heuristic solutions, including the ICernighan-Lin and 

simulated annealing. 

We can formulate this problem in the following matrix formulation. Define Ij,k to  be 

an j by k matrix by 

Define 

It  is easy to  see that  the Graph Partitioning Problem can be formulated as: 

man tr c T P T S p  
PCP(,) 

4. Optimization Problema in Network Routin6 

Harshavardhana [0] has shown that  for certain optimal node assignment problems 

associated with loop-free routing, the problem can be formulated in the form of (53, where C 

represents a cost matrix for connecting different nodes in a network and S is the adjacency 

matrix defining the connectivity graph. 



5. Embedding In the  Orthogonal Group 

Since P(n) is a subset of O(n),  we can also embed the optimization problems 

defined by (3) and (5) as optimization problems on O(n),  that is: 

min tr CT8 , 
P<O(n)  

Since O ( n )  contains elements of the form DP, where D is a diagonal matrix with diagonal 

values 1 or -I, (we will call such a matrix an H-matrix,) i t  is clear that  the global minimum of (6) 

and (7) will not be a global minimum in O(n)  in general. Moreover, for the Assignment 

Problem, the set of critical points of t r c T 9  is of the form 

This shows that  in general, the global minimum for (3) is not even a local minimum of (5). To 

remedy this problem, one can reformulate the embedding of AP as: 

min tr a ( 0 )  = min tr cT(80e) , 
PtO(n) Pt 0 (n) 

(8) 

where we denote the Schur-Hadamard product between two matrices by M o N  G ( M i j N i j ) .  

Since (DP)o(DP) = P O P  for any diagonal matrix D with diagonal value 1 or -1, in this 

formulation we can restrict the domain of optimization to the connected component of O(n)  

with determinant 1, namely, SO(n). Hence, the problem defined by (8) is equivalent to: 

Notice that for the problem defined by (O), finding an optimal point that  is defined 

by'an H-matrix will immediately lead to an optimal point defined by a permutation matrix. 



Furthermore, this formulation possesses other nice properties. In particular, the following 

theorem is proven in [3] : 

Theorem 1: If 8 is an H-matrix, then it  is a critical point of a as a function on SO(n).  

Moreover, 8 is a non-degenerate local minimum of a if and only if the permutation matrix that  

has the same zero entries as 8 is a non-degenerate 2 -  o p t  solution of the corresponding 

Assignment Problem. Moreover, there exists an H-matrix that  achieves the global minimum 

value. 

For the TSP, one can show that  a critical point of cT8 '~8 satisfies 

This implies that  8 CTBT is a circulant matrix. This ia a very restrictive conclusion. The 

following is a better way to embed the TSP in SO (n): 

nain tr ~ ~ ( 0 0 9 ) ~ S ( 9 0 8 )  . 
PcSO (n) 

Let T be a tour. We define a neighborhood of T i n  the following way: If T contains 

four distinct arcs from node p t o  q, q to  T, p' to  ql, and q1 to  r', (see the following figure), then 

the tour obtained from T by removing these four arcs and joining p to  ql, q1 to  T, p1 to  q, and q 

t o  r' is an element in the neighborhood of T. A tour that  is locally optimal for the TSP in this 

definition of a neighborhood is called a weak  $ - o p t  solution. 

We can prove a result similar t o  Theorem I for the TSP by using the embedding 

defined in (10). Before stating this result, we observe that there is no loss in generality if we 

assume for the TSP that  the cost function Csatisfies the following two properties: 

Al. All entries of C are non-negative. 

A2. The diagonal elements of C dominate in the sense: C;,; 2 2 Cj,; for any a' and j # t. 

Then, by a straightforward computation, one can show the following result holds. 



Theorem 2: If 8 is an H-matrix, then it  is a critical point of P as a function on SO(n). 

Moreover, 8 is a non-degenerate local minimum of p if and only if the permutation matrix that  

has the same zero entries as 8 is a non-degenerate weak 4-opt  solution of the corresponding 

Traveling Salesman Problem. 

Formlng A New Tour 
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Abstract 
Ever since the technique of the Kalman-Bucy filter was popularized, there has been 

an intense interest in finding new classes of finite dimensional recursive filters. In the late 
seventies, the concept of the estimation algebra of a filtering system was introduced. It 
has proven to be an invaluable tool in the study of nonlinear filtering problems. In 11990, 
the present author considered a general class of nonlinear filtering systems which include 
both Kalman-Bucy filtering systems and Benes filtering systems as special cases. A simple 
algebraic necessary and sufficient condition was established for an estimation algebra of 
this class of filtering systems to be finite dimensional. Consequently the present author has 
rigorously constructed a new class of finite dimensional filters which include both Kalman- 
Bucy filten and Benes filters as special cases. In 1991, Chiou and the present author have 
shown that the above new class -of finite dimensional filters are the most general filters 
from Lie algebraic point of view. 

$1. Introduction 
The basic approach to non-linear filtering theory was via " innovation method ", orig- 

indy  proposed by Kailath ca 1967 and subsequently rigorously developed by Fujisaki, 
Kallianpur and Kunita [FKK] in 1972. The difficulty with this approach is that the inno- 
vations process is not, in general, explicitly computable (except in the well-known Kalman- 
Bucy case). To circumvent this difficulty, it was independently proposed by Brockett-Clark 
[BC], Brockett [Brl],  Mitter [Mi] that the construction of the filter be divided into two 
parts : ( i )  a universal filter which is the evolution equation describing the unnormalized 
conditional density, the Duncan-Mortensen-Zakai (D-M-2) equation and (ii) a stateoutput 
map, which depends on the statistics to be computed, where the state of the filter is the 
unnormalized conditional density. Their idea of using estimation algebra to construct finite 
dimensional nonlinear filters was motivated from the Wei-Norman approach of using Lie 
algebraic ideas to solve time varying linear differential equations. Let f be the drift term of 
the filtering system and fl is the matrix whose ( i ,  j)-entry is ~ f j / ~ z i - ~ f i / ~ x j .  Tam, Wong 
and Yau [TWYl] considered a class of filtering systems having the property that the drift 

* Supported by the U.S. Army Research Office. 



term f of the state evolution equation is a gradient vector field. In 1990, Yau [Yul,Yaz] 
considered a class of filtering systems having the property that all the (a, j)-entry of R are 
constants. He derived a single necessary and sufficient condition for an estimation algebra 
of this general class of filtering system to be finite dimensional. In particular, the Mitter 
conjecture that for finite dimensional estimation algebra the observation h(x) has to be a 
degree one polynomial was proven. As an important consequence of these algebraic results, 
he constructed finite dimensional filters explicitly and rigorously for such a filtering system. 
Note also that the method used in [Y all computes the fundamental solution of the D-M-Z 
equation and hence it also solves filtering problem with non-Gaussian initial conditions. 
Perhaps the break through in the subject is that recently Chiou and Yau proves rigorously 
that from Lie algebraic point of view the finite dimensional filters constructed by Yau is 
the most general filter if the state space dimension is not more than two. 

52.The filtering problem considered and the basic concepts 

The filtering problem considered here is based on the following observation model : 

in which x, v, y, and w, are respectively, Rn, RP, Rm and Rm valued processes, and v and 
w have components which are independent, standard Brownian processes. We further 
assume that n = p, f ,  h are C" smooth, and that g is an orthogonal matrix. We will refer 
to x ( t )  as the state of the system at time t and to y(t) as the observation at time t. 

Let p( t ,  x) denotes the conditional probability density of the state given the obser- 
vation y (s) : 0 5 s 5 t. It is well known (see [DM] for example) that p(t, x) is given 
by normalizing a function, u(t, x), which satisfies the following Duncan-Mortensen-Zakai 
equation: 

1 az n a where Lo = yx:=l - f,- - C:=l - iCE1 h! and for i = 1 ,..., m, L, is 
the zero degree differential operator of multiplication by hi. (If p is a vector, we use the 
notation pi to represent the ith component of p. uo is probability density of the initial 
point, so). 

Equation (2.2) is a stochastic partial differential equation. In real applications, we 
are interested in constructing robust state estimators from observed sample paths with 
some propertyof robustness. Davis [Da] studied this problem and proposed some robust 
algorithms. In our case, his basic idea reduces to defining a new unnormalized density 



It is easy to show that [(t, x) satisfies the following time varying partial differential equation 

where [-, -1 is the Lie bracket as described by the following definition. 

Definition : Let X and Y are differential operators, the Lie bracket of X and Y , [X, Y], 
is defined by 

1x7 Ylt = X(YC) - Y(X€) 

for any COO function t. 

The objective of constructing a robust finite-dimensional filter to (2.1) is equivalent 
to finding a smooth manifold M and complete Cm vector fields pi on M and Coo functions 
v on M x R x Rn and wi's on Rm, such that ((t, x) can be represented in the form: 

We shall use the Wei-Norman approach to construct a finite-dimensional filter for 
(2.1). Before we can achieve that, we need to introduce the concept of the estimation 
algebra of (2.1) and examine its algebraic structure. 

Definition : The estimation algebra E of a filtering system (2.1), is defined to be the Lie 
algebra generated by {Lo, L1,. . . , L,} , or, E =< Lo, L1, - ' , L, >L .A .  



$3. Construction of general finite dimensional filters and Mitter conjecture 
Let 52 be an n x n matrix whose ( i ,  j)-entry af j / a z i  - a f i / 8 x j  are constants for all 

i ,  j. In this section, we shall assume the filtering system (2.1) has the property that 52 is-a 
skew symmetric constant matrix. 

We first observe the following Theorem 

af .  a .  Theorem 1 : 8;f - $ = c,j are constants for all i and j if and only if (fl,. . . , f,) = 

( ~ I , * . . , L )  + (z,---,g) where h,-..,1, are all polynomials of degree one and )is a 
Cm function. 

Observe that in Theorem 1 above if 4 = 0 on Rn, then we are in the situation of 
Kalman-Bucy filtering system. If (Il, -. - , ln) E 0, then we have the Bene's filtering system 
as special case. 

The following themem was by Ocone in 1981. 

Theorem (Ocone) Let E be a finite dimensional estimation algebra If a function is in 
E, then J is a polynomial of degree less than or equal to two. 

One of the contribution of Mitter was to conjecture that hl , .  -. , h, are polynomials 
of degree at most one if the estimation algebra is finite dimensional. This conjecture has 
recently been proven by the author [Yal] and plays the most fundamental role in the 
classification of finite dimensional estimation algebra. 

Theorem 2 [Yal] Let E be a finite dimensional estimation algebra of (2.1) satisfying 
- = Gj where c,, are constants for al l  1 5 i ,  j < n. Then h l , - - .  , h,  are a=; 

polynomials of degree at most one. 

The argument used to prove Theorem 2 can also be used to prove the following useful 
theorem. 

Theorem 3 [Yal] Let F ( x l , .  - .  , x,) be a COO function on Rn. Suppose that there exists 
a path c : R - Rn and 6 > 0 such that limt,, IIc((t)ll = M and limt+= F = 
-00, where Ba(c(t))  = {x G Rn : IIx - c(t)ll < 6) .  Then there are no COD functions 
f i ,  f2,..-, fn on Rn such that 

For many applications, the following corollary is more convenient. 

Corollary [Yal] Let F(xl,-.-,x,) be a polynomial on Rn. Suppose that there exists a 
polynomial path c : R ---+ Rn such that limt,, IIc(t)ll = m and limt--roo F o c ( t )  = -oo. 



Then there are no COD- functions f l ,  . . , fn on Rn satisfying the equation 

Definition : Let E be an estimation algebra of (2.1) satisfying 2 - = c,j where c,j 

are constants for d 1 < i, j 5 n. If E is finite dimensional, then the matrix 

,where we use vh ;  to denote the column vector (e, ..-, $)=, is a constant matrix in 
view of Theorem 2. H is called the observation matrix of (2.0. 

The following result provides a single characterization of when the dimension of an 
estimation algebra is finite. 

Let a D,=-- 
ax* fi 

and 

Then 

Theorem 4 [Yol] Let E be an estimation algebra of (2.1) satisfying - = c,j where 
cij are constants for all 1 5 i ,  j < n. 

(i) If is a polynomial of degree at  most two, and hi, 1 5 i 5 m are-polynomials, then E is 
finite dimensional and has a basis consisting of Eo = Lo, differential operators E l , .  - , Ep 
(for some p) of the form 

C;=l aijoj + Bi 
where a i j s  are constants and pjs are affine in x, and zero degree differential operators 
Ep+l, . - , Eg,  1 (for some q > p) where Els are f i n e  in x for p + 1 < a I: q. Moreover the 
quadratic part of r] - C z ,  hq is positive semi-definite. 

(ii) Conversely, if E is finite dimensional, then hl, . . , h, are &ne in x, i.e., the obser- 
vation matrix has rank n (in particular m 2 n), then 7 is a polynomial of degree at most 
two. 

In his talk at the International Congress of Mathematics, Brockett [Brj] proposed to 
classify d finite dimensional estimation algebras. The following Theorem gives an impor- 
tant step towards the complete classification of finite dimensional estimation algebras. 



Theorem 5 (Yal] Let E be an estimation algebra of (2.1) satisfying 2 - = q j  where 
$I cij  are constants for all 1 5 i ,  j < n. Suppose rn '2 n and the observation matrix is s 
constant matrix with full rank. If E is finite dimensional, then it is of dimension 2n + 2 
with basis given by 1, XI,. - a ,  x,, D l , ,  . . , D, and Lo. 

Deflnition : Suppose X is a differential operator, po is in the domain of X, r is a 
continuous function, and R(t) = r(s)ds. We denote by eR(t)Xpo the solution at time t 
of the following equation 

if it is well-defined. 

For 1 5 i 5 n, etDipo (x) can be expressed in the form : 

Hence, we can extend easily the definition of etDipo(x) to etDipo(t,x). 
Now we s h d  construct finite dimensional filters explicitely via the Wei-Norman ap- 

proach. 

Theorem 6 [Yal] Let E be an estimation algebra of (2.1) satisfying % - = c,j where 
c,j are constants for all 1 5 i ,  j 5 n. Suppose further that m 2 n and the observation 

n matrix has full rank, then 11 = C:,l aijxixj + b , ~ ,  + d where aij, bi and d are 
constants for all 1 5 i, j 5 n and the robust Duncan-Mortensen-Zakai equation (2.3) has 
a solution for all t 2 0 of the form : 

where T( t ) ,  rl (t), . . . , r,(t) ,  sl (t),  . , s, ( t )  satisfy the following ordinary differential equa- 
tions (3.3), (3.4) and (3.5). 

F o r l < i < n  

where hr(x) = C;=l h k j x j  + er for 1 5 k 5 m; hki and e k  are constants. 
F o r l l j  S n  



and 

$4. Classification of finite dimensional estimation algebras 

The concept of estimation algebra was proven to be an invaluable tool in the study of 
non-linear filtering problems. So the problem of classifying all finite dimensional estimation 
algebras is extremely important. The following theorem is a consequence of [TWYl] and 
[DTWY]. 

Theorem 7 : Suppose that the state space of the filtering system (2.1) is of dimension 
one. If the estimation algebra E is of finite dimensional, then either 

(i) E is a real vector space of dimension 4 with basis 1, I, D = $ - f and Lo = f ( D ~  - n) 
or (ii) E is a real vector space,of dimension 2 with basis 1 arnd Lo 
or (iii) E is a real vector space of dimension 1 with basis Lo. 

Definition : The estimation algebra E, of a filtering problem (2.1), is said to be the 
estimation algebra with maximal rank if x, + ci is in E for all 1 5 i 5 n where ci is a 
constant. 

The following theorem due to Chiou and the author classifies all finite dimensioqal 
estimation algebras with maximal rank if n = 2. The novelty of the theorem is that there 
is no assumption on the drift term of the nonlinear filtering system. 

Theorem 8 [CY] Suppose that the state space of the filtering system (2.1) is of dimension 
two. If E is the finite dimensional estimation algebra with maximal rank, then the drift 
term f must be &ne vector field plus gradient vector field and E is a red vector space of 
dimension 6 iKith basis given by 1, X I ,  22, Dl, D2 and Lo. 

Therefore from the Lie algebraic point of view, we have shown that the finite dimen- 
sional filters we constructed in $3 above are the most general finite dimensional filters. 
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An Accurate Algorithm for Minimal Partial Realizations 
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ABSTRACT 

We present a simple matrix representation of the Berlekamp-Massey algorithm for the minimum partial re- 
alizations problem, and show how pivoting can be added to the algorithm to improve numerical accuracy of the 
method. 

1. Introduction 

The problem of minimal realization of linear dynamical systems from input/output data has much practical 
importance. Many of realization procedures that have been developed rely on the solution of a Hankel system 
of linear equations. The Berlekamp-Massey (BM) algorithm [I], [6] is a fast Hankel linear system solver which 
originated in the field of coding theory. The algorithm is little known in the scientific computing community. One 
reason for its obscurity may be that the algorithm seems to lack a natural representation in matrix forms. Attempts 
to alleviate this situation can be found in Kung [4] and Jonckheere and Ma [3]. In this paper, we give a related but 
perhaps simples, way to present the algorithm. We show how our presentation leads to a pivoting strategy that 
improves the numerical accuracy of the computation. What is more, unlike other pivoting schemes for Hankel and 
Toeplitz matrices, our new algorithm never requires more than O(n2)  operations. 

Throughout this paper, unless otherwise stated, all matrices are n x n and all vectors have n  elements. Wherever 
convenient, we will use upper case Latin letters to denote matrices, lower case Latin letters to denote vectors, and 
lower case Greek letters to denote scalars. A Hankel matrix H has the form: 

/ V 1  V2 ... fln \ 

! ~ n  Vn+l . . .  V2n-1) 

and we are interested in solving the matrix equation: 

H z  = b .  
By rearranging its columns or rows, the Hankel system can be transformed into a Toeplitz system. For example, 
we can re-order the columns of N from the last to the first, and get the Toeplit,~ system of equations: 

(+ q;/l \ 1.; !) [x:;l) = [i;) (1 .3)  

V2n-1 V2n-2 " '  'In X 1 bn 

Similarly, we define the Yule-Walker problem for the Hankel matrix to be: 

(! ; ;;: y = -  (;;:) (1.4) 

Vi Vi+l * " ?2i-1 . Bzi 

Many algorithms for solving (1.3) have been proposed, but most of them, e.g., Levinson [5], may fail to calculate 
an accurate solution if the Toeplitz matrix has ill-conditioned principal submatrices. Interestingly, our numerical 
experiments indicate that our new algorithm may still work very well under these circumstances. There is much 
recent interest to introduce pivoting,to Toeplitz algorithms; see, e.g., [2]. 

This paper is organized as follows. Section 2 describes how one solves a Bankel matrix equation via the BM 
algorithm. Section 3 explains how the BM algorithm triangularizes a Hankel matrix that is strongly nonsingular. 
Section 4 presents our new numerical pivoting strategy. Section 5 considers the case of a general Hankel matrix. 
The last three sections contain examples that detail our numerical experience. 



2. Solving a Hankel Matrix Equation 

In Section 3, we will show how the Berlekamp-Massey algorithm constructs an upper triangular matrix R to 
reduce a Hankel matrix H to a lower triangular matrix L: 

The triangular matrix R also has a unit diagonal. From this factorization, the Hankel system (1.2) can be easily 
solved. Now, 

( H R ) ~  = and H~ = H 

imply that 

Multiplying both sides of (1.2) by RT, we get 
~~z = ~ ~ b .  

Hence we first apply RT to b, and then solve the triangular system (2.2). So, if the factorization (2.1) is available, 
a total of n2 multiplications is required to solve (1.2). It is worthwhile to point out here that the matrix R needs 
not be upper triangular. Even if R were a dense matrix, one could still solve (1.2) via (2.2), albeit at  a cost of an 
additional n a / 2  multiplications. When we introduce pivoting in Section 4, we may destroy the triangularity of R. 

3. Hankel Matrix Triangularization 

For this section and the next, we assume that the Hankel matrix H is strongly nonsingular, i.e., that all its 
principal minors are nonzero. This assumption simplifies our presentation, and will be removed in Section 5. For 
convenience, we need a "shift-down" matrix: 

where I,,-1 is theidentity matrix of order (n - 1). Thus, 

Note that 

- We now show how the BM algorithm computes columns of the two matrices R and L of (2.1) recursively. We 
proceed by induction, and use the usual notation representing the columns of the three matrices: 

R = ( ~ 1 , ~ 2 r . . . l r n ) ,  

L = (11, 1 2 , .  . . , I , ) .  



The first two columns of the matrices R and L are readily available: 

and 
11 = hl , 12 = h 2  - (q2/7l1) hl. 

Hence the top element of l 2  equals zero. Suppose now that the four columns r , ,  ~ j + l ,  l j  and l j + l  have already been 
computed, and that 

H ( rj 1 ) = ( 1  l j + l  ) . (3.4) 

Let us denote the elements of rj+l and l j + l  by 

From the assumption of strong nonsingularity we are assuming that A1 # 0. Also, let 

and 
l j+z = Hl;i+?. 

That is, 
H ( r j  r j + l  5 + 2 )  = ( I j  l j + l  i j + 2 )  

The new vector i j + 2  is easy to compute. From (3.1), it is seen that 

where 

and en denotes the last column of the n x n identity matrix. In words, the vector fj+2 is formed by "upshifting" 
each element of I j + l  by one slot and placing the scalar E in the n-th position. .A picture is worth a thousand words! 
Hence we get 

1 0  0 0 )  

. ( I j  I j + l  i j+z )  = 

\ X  h-j t 

0 0 0 
x 0 A1 

x X I  XZ 
x A 2  A3 

x A A,,, 



We now zero out the two leading nonzero elements of ij+z by using appropriate multiples of the leading elements 
of li and That is, we post-multiply the n x 3 matrix of (3.9) by the two 3 x 3 elimination matrices E!') and 
E!'). where 

and my),  rnr) denote the cokresponding multipliers. Finally, 

and 

Note that the ( j  + 2)-nd component of rj+z is nonzero. Hence from the strong nonsingularity assumption, the 
(j + 2)-nd component of l j c z  is also nonzero. Thus the multipliers are well-defined. 

Let us perform an operation count. The time-consuming steps include the calculation of the inner product < ( j 
multiplications ), and the multiplication of a scalar into the four vectors rj, rj+l,  l j  and lj+l ( 2n multiplications ). 
Hence a total of 5n2/2 multiplications is required to compute the decomposition (2.1). 

4. Pivoting 

One may have noted that the magnitude of two multipliers rnl and ma of (3.10) can be arbitrarily large. In 
response, we propose a simple scherne.of eliminating the leading nonzero element of either li or ij+2, using either 
E ~ O )  or E;'), respectively, where 

/ 1  o o \  

The important point is that either rn(,O) or m y )  must be at most one in  absolute value, in order to keep the 
overall process stable. We thus choose either E?) or E:') to achieve a better numerical accuracy. Our approach is 
somewhat similar to a pairwise pivoting scheme commonly used in systolic computing. Similarly, to eliminate the 
other nonzero element, we would choose among Ei0) ,E;'), E?) .or E $ ~ ) ,  where 

The location (i, j) of the multiplier represents the non-zero leading entry of column j is tb be eliminated by that 
of column i .  

The column updating proceeds essentially as before: 

and 
('j rj+l rj+z) + (rj rj+l 

where El equals E?) or E:'), and E2 equals E?), E;'), E?) or E?). TWO important observations are as follows. 
First, the resultant matrix L stays lower triangular, but the previously upper triangular R may have gained two 
nonzero subdiagonals. Second, our pivoting scheme increases the number of multiplications by only O(n)  , i.e ., the 
total number of multiplications is still 5n2/2 + O(n). 



5. General case 

Recall that under the strong nonsingularity assumption, we knew that the ( j  + 1)-st element of l j + l  must 
be nonzero. -We now remove the assumption that the matrix H is strongly nonsingular. During the elimination 
process, we may get additional leading zero elements in I j + 1 .  For our discussion in this section, let us assume that 
both ( j  + 1)-st and ( j  + 2)-nd elements are zero but that the ( j  + 3)-rd element is nonzero. Hence the procedure 
described in Section 3 would not work because there is a gap in the nonzero structure in (3.7). Now, let 

Define some new vectors by 
? j f 2  = Z ~ j + l ,  Fj+3 = 2Pj+2, Fj+* = Z'?j+3, 

and 
ij+2 = HPj+z, l j + s  = H i j + 3 ,  lj+4 = Hi;i+4 

That is, 
H ( r i  " j + l  Pj+z fj+3 6 + 4 ) = ( l j  l j + l  ij+z I j f 3  i j+4)  

From (3.11, the new vectors i j + 2 ,  Ij+a and ij+4 are calculated by 

where 

Indeed, the million words picture looks like: 



As described in Section 4, we would like to pivot and eliminate the above matrix so that each row contains an 
unique pivot element. The elimination matrices in this case are four 5 x 5 matrices, each with all 1's on the diagonal 
and a multiplier in the ( i ,  j )  location. Same as before, the j th  leading non-zero entry is to be eliminated by the ith 
column, and all the multipliers in the elimination are less than one in absolute value. 

In practice, we work with finite-precision arithmetic, so an exact zero would hardly happen. In order to tell 
if we are getting any additional zeros in the column of lj+l, we need to choose a threshold, such that any number 
smaller (in absolute value) than the threshold is regarded as a zero. If this is the case, we will then apply the 
technique in this section to deal with the situation. 

6. Numerical Examples 

We consider the Hankel matrix equation (1.2) and the corresponding Toeplitz matrix equation (1.3). We 
compare three procedures: the BM algorithm for (1.2), our new pivoted BM algorithm for (1.2), and the Levinson 
algorithm for (1.3). We construct two sets of examples, the first where EM would fail and the second where 
Levinson would fail. Specifically, we tinker with the 2 x 2 leading submatrices of the Hankel and the corresponding 
Toeplitz matrices: 

In Example 1, the submatrix H ( ~ )  is ill-conditioned but the submatrix T ( ~ )  is not, while in Example 2, the situation 
is reversed. In Example 3 both submatrices are ill-conditioned. Whereas the BM algorithm fails in Examples 1 
and 3, and the Levinson algorithm fails in Examples 2 and 3, our new algorithm works well on all three sets of 
equations. 

For all examples in this paper, we choose the left hand vector b such that the solution vector x = 
( 1 1 + + .  l lT .  To compare the algorithms, we calculate 1 1  z - f 1 1 2 ,  where i denotes the computed solu- 
tion. We ran our examples using MATLAB on a Sun Sparc station. In this section we choose as a threshold, 
6 11 H 112, where c (w 2 .22 .  10-I? denotes the machine precision. We use K ( M )  to denote the condition number 
with respect to the 2-norm of a matrix M. 

Example 1. This example shows why pivoting is necessary for the Berlekamp-Massey algorithm. Let 

2 4 8  
~ ' = [ 4  8 4  '1 1 - 6  2 and JIi2) = ( 

4 )  . 
8 4 2 1 - 6  

The submatrix of H , ( ~ )  is ill-conditioned when 6 is small, and is singular when 6 is zero. As expected, the BM 
algorithm delivers worse accuracy as we decrease the size of 6. The matrix H1 is well conditioned, with K ( H ~ )  = 5.6. 
However, the BM algorithm determines an L that is ill-conditioned, contributing to the loss in accuracy when one 
solves (1.2) via (2.2). On the other hand, our new algorithm computes a very well-conditioned L. 

Table 1. Error Behavior for Example 1 

6 

1 0 - W . 0 .  

BM 

4 L )  

2.0 - lo5 
2 . 0 . 1 0 ~  

1013 
2.0. 1017 

Levinson 

1 1  2 - 112 

1.11 . 10-l6 
0.00 . 10"l6 
4.00 . 10-l6 
1.11 . 10-16 

1 )  a: - 2 112 

9.98 - 10-l4 
4.96. 10'12 
4.96. lo-'' 
1.98 

Pivoted BM 

23 
23 
23 
23 

11 2 - i 112 

3.24 . 10-Is 
3.24. 10'l5 
3.24. 
3.24 . lo-'$ 



Example 2. This is an example where the Levinson algorithm fails because the submatrix ~ z ( ~ )  is ill-conditioned: 

/ 0 2 1 - 6  1 \ 

This example also portrays a unique property of the BM algorithm, that it still works even though the (1,l) element 
of the matrix equals zero. However, the algorithm may deliver a poor solution if the (1,l) element is non-zero but 
small in size. Again, here the Hankel matrix is well-conditioned, with K ( H ~ )  = 7.3. Both our new algorithm and 
the BM algorithm calculate well conditioned L. 

Table 2. Error Behavior for Example 2 

Example 3. This is an example where both BM and Levinson algorithms fail because the submatrices HY) 
and d2) are ill-conditioned: 

1 - 6  2 4 1 - 6  1 

1 - 6  2 
, H ? ) = (  4 )  and T : ~ )  = 

1 - 6  1 1 - 6  4 
1 1 - 6  4 2 1 - 6  

s 

10'~ 

lo-" 

Again, here the Hankel matrix is well-conditioned, with K ( H ~ )  w 31. Our new algorithm calculates a "good" L, 
but the BM algorithm determines an L that is ill-conditioned. 

Table 3. Error Behavior for Example 3 

BM 

The three examples have shown how our pivoting scheme works better than the other two conventional al- 
gorithms. However, when the size of the matrix H increases, roundoff errors may accumulate so that it becomes 
hard to  define a numerical zero. If we choose a small threshold, such as the one we have used, then the condition 
number of any principal submatrix may become as large as the inverse of the threshold and a significant loss in 
accuracy may occur. From our experiments, we observed that the accuracy of the solution is proportional to  the 
largest condition number of any principal submatrices. 

4 L )  

36 
34 
34 
34 

On the other hand, if the threshold is large, we effectively work in a lower precision, so the factorization will 
have limited numerical accuracy. Therefore, in the next section, we experiment with a compromised threshould 
value. To compensate for the loss in accuracy due to this choice of a larger threshold, we adopt iterative refinement 
at the end. 

Levinson 

II x - 112 

6.00 lo-15 
3.07 10-l3 
9.32 . lo-'' 
1.10 - lo-" 

I1 x - 2 I12 

1.87 . 10-l5 
1.85 . 10-l5 
4.15 * lo-'' 
2.24. 10-l5 

Pivoted BM 

6 

n (L )  

5.3 
5.3 
5.3 
5.3 

II z - f 112 

3.14. 10-l6 
6.28. 10-l6 
5.87 . 10-l6 
1.11 . 10-l6 

Levinson 

11 X - 2 112 

1.12 10'13 
2.52. 10-l1 
3.85 . lo-' 
7.21 lo-" 

BM Pivoted BM 

K(L) 

7.0. lo4 
7.0 
7.0 . 1012 
3.8. 1016 

K(L) 

279 
288 
288 
288 

11 z - 112 

9.45 . lo-'' 
1 0 9 . 6 3 .  10-l5 

1.15 . 10-l4 
8.67 - 10'14 

11 2 - 5 112 

2.75 . 10-l4 
4.63. 10-l5 
1.15 . 10-l4 
8.67. 10-l4 



7. Further Examples 

In this section we show how our pivoting scheme works when the size of the matrix H  increases. We observe 
that with an increase in dimensions there is a danger of underflow. Hence some form of normalization is required. 
Our choice is to normalize L to make the diagonal elements all ones, so that underflow can be avoided. 

We construct our matrices from the Toeplitz examples in Sweet's paper [7], and select an iterative refinement 
scheme for improving the accuracy of the initial solution do): 

1. Compute r(" = HZ( ' )  - b. 
2. Solve LTy = R ~ T ( ~ ) ) .  

3. Update x(i++')  = - Y. 

The criterion for ending the iterative refinement is when 

1 1  di) 112< 10 * E *  1 1  H 112 1 1  Ji) 112 

The threshold for the examples in this section is chosen as 10.  J;. 1 1  H 112. 

Example 4. We pick an example to show how iterative refinement improves our solution, and how the number 
of refinements is affected by the conditioning of principal .submatrices. The order-6 Hankel matrix is 

For 6 smaller in the magnitude than 0.5, the matrix is well conditioned with K(H*)  less than 100. The threshold is 
approximately equal to 6 For 6 = 0 the order-3 principal submatrix is singular. Starting with 6 = and 
then decreasing it , we can make this submatrix progressively worse conditioned without significantly changing the 
condition number of H 4 .  

Table 4.1. Error Behavior for Example 4 

S 
(3) ( H  ) 

dL) 
K(R) 

1 1  r - do) 1 1 2  
1 x - x 1 1  
1 1  x - d2) 112 
#Refine. 

BM 

10-2 
1.36. 
2.29. l o7  
2.29 lo7 

1.06 . 
7.61 . lo-'' 

1 

Pivoted BM 

1.36. 
197 
182 

1.33 . 10-l3 

0 

EM 

1.36 . lo-' 
2.29. 10l1 
2.29 . lo1' 
6.59 . 1 0 ' ~  
7.84 . 10-lo 
5.27 . lo-'" 

2 

Pivoted BM 

1.36 . 
197 
182 

2.94. 10-l1 
2.88 . 10-Is 

1 



Table 4.2. Error Behavior for Example 4 (Continued) 

Table 4.3. Error Behavior for Example 4 (Continued) 

Note that the pivoted BM algorithm always produces factors R and L that are better conditioned than 
those produced by the BM algorithm without pivoting. As a consequence, the first approximation to the solution 
computed by the pivoted BM algorithm is more accurate than that computed by the BM algorithm. When the 
the smallest singular value of the order 3 principal submatrix becomes smaller than the threshold, both algorithms 
behave in a similar way. 

BM 

lo-6 
1.36 . 

214 
202 

1.47. lo-' 
8.89 + 10-l4 
1.37. 10-l5 

2 

Pivoted BM 

10 -~  
1.36 

197 
182 

1.12. 10'1° 
3.84. 10-l5 

1 

s 
( H )  

n(L) 
K(R)  

11 x - do) 112 

1 x - 2 )  2 

I (  x - x ( ~ )  ( (2  

1 )  z - 2(3) ( I2 
( 1  z - 2(*) )I2 

#Ref ine .  

Example 5. We construct a 13 x 13 Hankel matrix H5 whose first row is given by 

Pivoted BM 

lo-6 

1.36 
122 
53 

2.11 . 10" 
1.55 . 10-lS 
4.29 . lo-'' 

2 

BM 

lo-= 
1.36 . 
2.29 - l0l3 
2.29 1013 
1.23 . lod2 
5.93 . 
2.71 . lo-' 
1.24 . 10-la 
3.67 . 10-l5 

4 

and the last column by 

BM 

10-10 

1.36 + lo-'' 
214 
202 

1.47 + 10-l1 
5.87 . 10-l6 

1 

Pivoted BM 

lo-" 

1.36 . 10" 
122 
53 

2.11 . lod9 
3.73 . 10-Is 

1 

5 
(3) ( H  ) 

4 L )  
4 R )  

1 1  z - i ( O )  112 

1 x - 5 )  1 1  
#Refine. 

the threshold is 5.35 . 

Pivoted BM 

10-lo 
1.36 . lo-'' 

122 
5 3 

2.11 . 10-l1 
3.92 . 10-l5 

1 

BM 

lo-& 

1.36. lo-' 
214 
202 

1.47 . lo-' 
2.51 . 10-l5 

1 

The matrix is well conditioned in that ) E ( H ~ )  = 89.0, but it contains five consecutive ill-conditioned submatrices 
HP)  to H?), i.e., orders 4 through 8. The smallest singular values of these five principal submatrices are 2.36- 
5.23.10-5 5.33.10-', 5.23.10-~ and 2.36.10-~. The effect of encountering a sequence of ill-conditioned submatrices 
is felt later in the elimination process and is manifested by a severe loss in accuracy in the subsequent columns of R 
and L. Hence, some form of restoration is required for high accuracy. A way to bring back the lost information is to 
recompute the most recent columns of R by solving a Yule-Walker problem as in (1.4), utilizing the decomposition 
we already have at hand. In this example, columns 10 and I1 of R are recomputed, so that again the process 
restarts from a new and accurate point. The results are presented in Table 5 .  Notice that the two factor matrices 
produced by BM algorithm are nearly singular. 



Table 5.  Error Behavior for Example 5 

Example 6. We extend the previous example to size 50 x 50 by appending random numbers. For this example, 
the Hankel matrix is moderately ill-conditioned with %(Hs) = 1.97 . The results are shown in Table 6. 

Table 6.  Error Behavior for Example 6 

R(L) 
4 R )  

1 1  z - x(") 112 
I I ~ - 2 ( ~ ) 1 1 ~  
1 )  x - d2) ) I 2  
1 1  - e(4) 112 

#Refine. 

8. Conclusion 

BM 

3.93 . 10+13 
3.93 - 10+13 
6.58 - lo-' 
2.93.10-" 
8.82 . lo-' 
1.58. lo-l3 

4 

- 

dL)  
K(R)  

1 1  z - do) 1 1 2  
1 z - 2 ) I 2  
1 1  x - d2) 112 
1 1  x - x ( ~ )  112 

1 1  z - d5) 112 
#Refine. 

We believe that the Berlekamp-Massey algorithm works well when the Hankel matrix is positive definite and 
well-conditioned, so that none of its principal submatrices is ill-conditioned, and no pivoting is necessary. In 
general, consider the Hankel matrix as a moments matrix with respect to certain weights. These weights are not 
necessarily all positive, and thus we may need to deal with Hankel matrices that do not have positive definite 
property. Strategies such as pivoting, normalization and gap-jumping are required in this case. 

Pivoted BM 

1.33 . lo+3 
1.24 . 10'~ 
3.29 . 
2.11. 
4.18 . 10-l4 

2 

For the previous examples, we adopt a scheme that combines both pivoting and normalization. To generate a 
. new column of the triangular factor, say column i, we combine it with columns i - 1 and i - 2. Since normalization 
is performed after each new column is generated, and column i is a shifted version of column i - 1, so all the three 
columns have a 1 as the leading nonzero element. Therefore, no pivoting is performed in the first phase of column 
combination. After columns i and i - 2 are combined, pivoting takes place in the second phase, in which columns 
i and i - 1 are combined. Both steps are crucial to the stability of the procedure. Pivoting prevents multipliers 
from being too large, while normalization keeps the norm of the columns from underflowing. 

EM 

4.01 - lo+13 
4.01 . 10+13 
5.86 . 10-I 
2.39 . 
7.46 . 
6.87. 
1.17. 10-l2 

5 

Since we remove the constraint of positive-definiteness, a well-conditioned Hankel matrix may have several 
ill-conditioned submatrices. The choice of the threshold is a subtle issue, and from the previous examples, we see 
that a compromised threshould value, such as 1 0 .  fi. 1 1  H 112, may be a good choice. 

Pivoted BM 

1.33 - lof 
8.71 . 10+~  
2.44 * 

4.54 . 
9.86 . 
5.58. lo''* 

3 . .  

Whenever there is a sequence of ill-conditioned principal submatrices, i.e., a gap, we simply shift up the 
previous column of L until the next well-conditioned submatrix is encountered. Thus, we avoid the computation 
within the gap by "jumping over7' it. Two columns of L are recomputed right after the gap, so that the errors in 
the factorization caused by the jumps are confined within the gap and do not propagate to tha succeeding columns. 
Therefore, after a few steps of iterative refinement at the end, all the errors in the solution (not the decomposition) 
will be corrected and the solution will be accurate to machine precision. 



Another pogsibility to deal with the gap is to perform a LU decomposition with partial pivoting instead of 
jumping over it. But the worst case for this approach requires O(p2n) operations to decompose the part of the 
matrix corresponding to the gap, in contrast to O(pn)  operations for the gap-jumping approach, where p denotes 
the size of the gap. 
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I Introduction 

The difference X = AltAl - A ~ ~ A ~  of two matrix outer products A ~ + A ,  and A ~ ~ A ~  arises in re- 
gression problems, in signal processing in the context of bearing estimation, and other applications. 
It is of practical interest to consider two problems related to the matrix X. The first problem is 
to find the triangular decomposition of X, the second problem is to find the eigendecomposition 
of X. For numerical reasons it -is desirable not to form explicitly the products A ~ ~ A ~  and A ~ + A ~ .  
In this paper we describe how these two problems can be solved with the help of hyperbolic type 
transformations. 

2 Triangular Decomposition 

In considering the difference A ~ ~ A ~  - A ~ A ~  it is helpful to introduce an indefinite inner product 

[., on Cn induced by a weighting matrix @, d = diag(f 1). This product is defined as follows 

where t denotes conjugate transpose. (A broad treatment of indefinite inner products and their 
applications can be found in [3].) The indefinite inner product [.,.Is defines the indefinite norm 
1 1  a 

I I X I I ~  = ~ ~ P ( [ x , x I * )  J G G .  
Note that despite the notation (1 u (lo is not a norm, because norms are always non-negative. The 
weighting matrix a, often referred to as the signature matrix, defines also hypernormal (with respect 
to a) matrices. A matrix V is hypernormal if 

The indefinite norm ( 1  - ) Ia is preserved under hypernormal transformations. Hypernormal matrices 
can be used in the computation of the triangular factorization of the difference - A ~ A ?  



(without forming the products A ~ ~ A ~  and A ~ ~ A ~ ) .  IfX is positive definite and the Cholesky factor 
of A!A, is known then the problem of computing the Cholesky factor of A ~ ~ A ~  - A ~ A ~  is known 
as the downdating of the Cholesky factor. For a discussion of algorithms based on hypernormal 
transformations that can be applied to downdating problem see [I] and references therein. 

Here we want to show how to compute a triangular decomposition of an indefinite strongly 
nonsingular X = A I ~ A ~  - A ~ A ~ .  A square matrix is called strongly nonsingular iff its a,ll principal 
minor are nonsingular. Strongly nonsingular matrices admit a triangular decomposition of the type 
R ~ Q R  where R is upper triangular and 9 is diagonal [4]. The tool that we propose to use is the 
hyperbolic Householder transformation [a]. 

The original Householder transformation [4] of a (column) vector v involves finding an orthonor- 
ma1 matrix Q so that 

Qv = * 1 1 ~ 1 1  el, (1) 

where 1 1  v [ I =  66 and el is the unit vector with the first element one and all the rest zeros. This 
can be viewed as compressing all the vector's energy into the first entry. It is easily verified that a 
matrix Q given by: Q = I - 2bbt/btb where b = v~ [ ( v  11 el  satisfies (1). 

The hyperbolic Householder transform will take- on a similar form, and a signature matrix G 
has to be specified as well as the vector v. The natural thing is to let 

If v's and 9's are such that vt9v > 0 then H is always well defined, see [a], [7]. We would like to 
be able to obtain H for any pair and v for which vt@v # 0. 

If v denotes the original vector and i denotes the transformed vector, then we expect the 
following: 

it@+ = v t a v ,  (3) 

The relation (4) can be viewed as compressing all hyperbolic energy of v into its first component. 
It turns out that the two conditions (3) and (4) cannot generally be met simultaneously. This is 
because from (3) we would expect that 

Fkom (4), the sign of the right hand side.of (6) is determined by sign(iP(1,l)) and is independent 
of the sign of vt@v. Hence (3) and (4) may contradict each other. Note however that if 1 1  v!l+# 0 
then there exists k,  1 5 k 5 n such that 

Now, by permuting entries 1 and k in v, and entries (1,l) and (k, k) in 4) we obtain ij and 6, 



where P is the permutation matrix, for which (6) will be satisfied. We will now show that (3) and 
(4) will .hold for the permuted quantities. 

Let v and @ be such that 73th # 0 and without loss of generality we can assume that (6) is 
satisfied. Definer 

b = @v + Babs(l(v (IO)el . (8) 

Note that 

If we pick 
A 

e = {  sign(er@e,)& if ol # 0 
sign(eT@el) otherwise 

then (9) becomes 
b t a b  = 2 sign(eT@er)(ll v 11; + abs(II vI1a)I~i I ) . (11) 

Now it is easy to check that for H defined by (2) and (8) 

and H is hypernormal with respect to 9 l .  The relation (12) states that any vector v with nonzero 
hyperbolic norm can be "reflected" by a hyperbolic Householder transformation onto the first 
coordinate e l .  It is easy to see that e l  can be replaced by any direction d for which d t ~ d  # 0. 

At this point a problem that should be addressed: what happens when 1 1  v / I 9 =  O? The answer 
is that both procedures per se fail (see [2] for some implications of this problem). What we rely 
upon in recovering from a situation of (1 w 0 is that the hyperbolic Householder is applied to 
whole matrices, not merely to isolated column vectors. When the matrix under consideration is 
strongly nonsingular then for a suitable permutation of columns we will always be able to assure 

that I l  v I/@# 0. 
Recall that we seek a decomposition of the following form 

We can construct a sequence of hyperbolic Householder transformations HI, Hz, - a ,  Hk, where 
Hi is hyperbolic with respect to a signature matrix a;, such that 

- 

where Pi is a suitable permutation for which the relation (7) is satisfied. The permutations Pi, 
i = 1,2,. . ., k, and the signature matrices a;, i = 1 ,2 , .  . . , k, are related via 

with a. = 9. 

'This extension of the hyperbolic Householder transform for nonpositive normed vectors was also developed 
(independently) by Cybenko [2] in a diierent context. 



From (13) we obtain ak and R such that 

A ~ @ A  = R ~ @ ~ R  

If in step i the working column v; and the signature matrix bj are such that 

v!@~v; = O 

then a suitable permutation S; of the remaining columns of A has to chosen so for the new working 
column vj 

~ f @ j v j  + O m  

This is possible as A ~ @ A  is assumed to be strongly nonsingular [4]. On completion we get the 
desired triangular factorization of A = [A! ,  At]t, 

3 Eigendecomposit ion 

RecaJl that the SVD of an n x m matrix A is given by : 

A = USV~, '  

where S is an n x rn diagonal with non-negative diagonal, U is an n x n unitary, V is an m x m 
unitary. Note that for A = [A! , A!$, 

t Thus the SVD provides the eigenvalues and eigenvectors of A!Al + A,A2. For numerical reasons 
it proves more numerically accurate to operate on the data matrix A directly and the SVD is the 
tool makes this possible. 

Consider now an analogous problem of finding the eigenvectors and eigenvalues of A!A~ - A I A ~  
where Al,  Az are two n x m matrices. Or more generally, given a matrix A and a matrix 9 that 
is diagonal with &1 on the diagonal, find the eigenvalues and the eigenvectors of A Q A ~ .  This by 
setting: 

is equivalent to that of finding the eigenvectors and eigenvalues of A ~ A ~  - A ; A ~ .  Such a problem 
comes up in at least three distinct physical scenarios. One is the downdating problem, another is 
the so-called covariance differencing problem, and a. third is array calibration. For a description of 
these problems and how thet arise in applications see [6]. 

In order to find the eigenvectors and eigenvalues of A ~ A ~  - A;A~ without forming the outer 
products explicitly, a new decomposition called the Hyperbolic Singular Value Decomposition, the 
HSVD in short, was proposed in [6]. The HSVD is described in the following theorem. 



Theorem: Let 9 be an rn x h diagonal matrix, with entries f 1 and let A be an m x n 
matrix, rn > n, such that A @ A ~  is full rank. Then there exists an n x n unitary matrix 
U, and an m x m matrix V with 

v t 9 v  = 4 (14) 

where 6 is a diagonal matrix with entries f 1 (possibly different from a), and an n x m 
diagonal matrix D with positive real diagonal entries, such that 

From the HSVD of A we obtain that 

Hence the matrix U is the matrix of eigenvectors and the diagonal of D & D ~  are eigenvalues of 
A+$A. 

One way of finding the HSVD in the case when A Q A ~  is full rank is via Hestenes method. 
Recall that the Hestenes technique [5] was originally designed for finding a unitary matrix U such 
that W = AU has orthogonal columns. We outline this technique in some detail and then modify 
it to find the HSVD of A. 

The Hestenes process of finding W and U is iterative and proceeds by constructing a sequence 
of matrices Wk , k = 0,1,. . . , 

WO Z A, Wk+l = WkGk , (16) 

and a sequence of matrices Uk 
uo I ,  Uk+l = UkGk 

where Gk is a plane rotation matrix operating on columns i = i ( k )  and j = j(k) of Wk,  

The angles of rotations are chosen in such a way that the resulting columns become orthogonal. 
Equivalently, this is to say that the similarity transformation Gk on the symmetric matrix W; wk 
zeros its off-diagonal elements (i, j) and (j, i). The angle $k , 0 < 141 5 %, can be determined from 

Gk = 

the relation 

' 1  . 
. cos& . -sin dk 
. 1 : i ] .  
. sin dk . cos q5k . 

1 - 

where a$:) = rr(w:wk)ej. Thus, the the Hestenes method for computing SVD is an implicit 
realization of the two-sided Jacobi method for computing the eigend.ecomposition of A ~ A .  



By orthogonalizing all pairs of columns of Wk in a predescribed order called a sweep, and by 
iterating sweeps, the columns in the limit become orthogonal. In practice, the process terminates 
when columns of Wk are consider to be numerically orthogonal. Then, on one hand we have that 

and on the other hand 
Wk = v k x k ,  

where Xk = diog (c!')):-~ and V has brthonormal columns. Thus, numerically, the factorization - 

is an approximate SVD of A. 
Now, if we insist that AU be hypernormal with respect to the matrix a, then ( A U ) ~ @ ( A U )  = 

U ~ E ~ ~ E ~ U  will give the eigendecomposition of AtQA, the precise decomposition that we were 
sought in the first place. The only difference in implementation is that the angles of rotations are 
chosen in such a way that, for a single rotation, the resulting rows become hypernormal. More 
precisely, 

where wik) r Wke;. Again, by applying rotations to all different pairs of rows in a sweep, and 
iterating the sweeps, the limit matrix itself becomes hypernormal. 

As we can see, the Hestenes technique for computing the HSVD has essentially the same struc- 
ture as the Hestenes technique for computing the SVD. The numerical properties of the Hestenes 
technique for computing the HSVD are the subject of the ongoing investigation. 

4 Numerical Examples 

In order to illustrate the usefulness of hyperbolic transformations in factoring differences of outer 
products we have conducted two numerical experiments. In the first experiment we compared the 
numerical accuracy of the eigenvalues of the difference of two matrix outer products computed by 
the two-sided Jacobi method applied explicitly to the difference A ~ A I  - A ~ A ~  with the Hestenes 
method for computing the HSVD applied to the original data A = [A!, A:]+. 

In the second experiment we com ared the accuracy of finding the inverse of the difference of P two matrix outer products A ~ A I  - A,A2 directly from the difference, indirectly via the triangular 
decomposition of A  = [A! , ~ f ] t ,  and via the HSVD of the data A  = [A! , A!]+. 

For the first experiment we formed an n by m matrix !f! G [diag(Al, ...., X,)IO] and defined the 
signature matrix 9 via 9 diag({(-1)" i = 0, ...., n - 1)). The eigenvalues of ~ 9 9 ~  are quite 
clearly AT, -A;, ..., X i .  By picking a random n x n unitary U and a random m x m hypernormal 
(w.r.t 9) V we can form 

A = V S U ~  



for which 
A ~ @ A  = US~V+@V'~TU = u ~ t a ~ ~ u t  

has the same eigenvalues as 9ta'cT; but is now a full matrix. - 
We computed the eigenvalues of At@A via hyperbolic Hestenes method which operated on 

the original data matrix A and next via the two-sided Jacobi method which operated on A ~ @ A .  
Simulations were conducted using MATLAB for which relative precision E is 2-48. For a given 
data matrix A G ~ 9 U t  we constructed the corresponding covariance matrix A ~ @ A .  We chose 
\E diag (loS, 104,1), and generated the hypernormal matrix Vk as a product of k, k = 1 ,2 ,3 ,4 ,6 ,  
random hyperbolic Householder matrices. Note that the condition number of At9A is 1016 which 
is comparable to the reciprocal of the relative precision used in the computations. 

Let us denote the exact eigenvalues of A ~ @ A  as A?, the computed eigenvalues by Hestenes 
A ~ - A J  AG-AH 

method as A X ,  and by Jacobi method as A!. In addition, let yt =_ + and y" 7. 
X i  

Table I. 

The hyperbolic Hestenes method always gave better approximation of the eigenvalues than the 
Jacobi method, see Table I. However, the accuracy of the hyperbolic Hestenes was influenced by 
the number of terms in the product V k  and varied from simulation to simulation. 

For the second experiments we generated a k x k random unitary U, random n x k V'i and 
(1) rn x k V2 such that v/lr, = Ik = v J ~ .  Next we picked diagonal matrices El = diag(oi ) and 

(2) Cz = diag(a, ). Now by letting 

we got the test matrix 
X = A ~ A ,  - A : A ~  . 

Two tests were performed. In one the inverse of X was computed, in the other the eigenvalues 
of X were computed. 

The inverese of X was computed in four different ways: 

Xa'nv = U C - ~ U ~  was considered to be the "true" inverse. 



The inverse covXinv was computed directly from the difference of the covariances, covXinv = 
(A[AI - A ! A ~ ) - ~ .  

a The triangular decomposition X = RtDR was computed using hyperbolic Householder 
transformations operating on Y = [A! ~ f ] t .  Next the inverse HHXinv was calculated as 
H H X i n v  = R - ~ D R - ~ .  

The HSVD [A! A! ]t l< = H, where K is orthogonal, H is Corthogond, was computed via 
Hestenes method. The inverse H S V D X i n v  was calculated as HSVDXinv = K ( H + @  H)- 'Kt .  

(1) k By picking (a, );,, and (o!'))bl different test matrices were generated. The test matrices 
were divided into five categories as illustrated by Table 11. 

Table 11. 

For each method the relative errors with respect to the norm of Xinv were recorded. Typical 
results of this test are summarized in Table I11 beldw. 

Table 111. 

In the second experiment the eigenvalues were computed in three different ways: 

a trueeig = diag(C) were considered to be the true eigenvalues 

eoveig were the eigenvalues computed via two-sided Jacobi method directly from A!AI - A : A ~  

r H S V D e i g  = d i a g ( ( H t @ H )  were the eigenvalues computed form the HSVD of Y 

The magnitude of the relative errors was analogous to that for the inverse of X. 

The numerical results indicate that for class I11 and class V the methods that operated on 
the original data via hyperbolic type transformations produced better numerical results than the 



methods that operated on the explicit difference of the outer products. Theoretical backing for this 
improved accuracy remains a topic for future investigation. 

We feel confident that there are many more applications within and beyond digital signal pro- 
cessing or control where the hyperbolic transformations will be useful for its numerical stability, 
fast computational characteristics, and as a theoretical structure. 
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Abstract 
Integral equations of the first kind are usually ill-posed, that is, 

they have solutions which do not depend continuously on the right 
hand side. When solving these equations numerically, roundoff error 
is introduced in the right hand side, and even this small change can 
cause very large changes in the solution of the numerical problem. This 
problem is made even worse when the right hand side is observed with 
error, i.e. for ill-posed inverse problems. 

It is the purpose of this paper to do two things. First, we point 
out that, for a certain class of problems, simple Richardson iteration 
can provide a numerically stable means of approximittely solving an 
integral equation of the first kind numerically. However, Richardson's 
algortihm can converge very slowly. We therefore also discuss a pre- 
conditioned Richardson algorithm, which can greatly accelerate con- 
vergence and which has a natural probabilistic interpretation when 
applied to  equations with positive, bounded kernels. 

1 Introduction 

Consider the following integral equation: 

We will illustrate the main ideas of this paper by means of two exam- 
ples. 

For the first example, we take k(x, y ) to equal 

y(1- x )  for 0 < y < x 
x ( l  - y )  for x 5 y < 1 ' 



and the right hand side to be 

This equation is classified as a Fredholm integral equation of the first 
kind. It is an equation of the first kind because the unknown function, 
f ,  appears only in the integrand. It is a Fredholm equation because 
the limits of integration are constant. The function k ( x ,  y) is called the 
kernel of the equation. Some important features of the kernel chosen 
for this example are that it is continuous, bounded, and peaked along 
the line x = y. 

For the second example, we take k ( x ,  y) to equal 

and the right hand side g z ( x )  to be an arbitrary bounded, differentiable 
function. With the kernel (4), the equation (1) has upper limit of 
integrtion x. An equation of this form is called a Voltewa integral 
equation of the first kind. 

When treating the Volterra equation with kernel (4) numerically, 
we can work with the equivalent equation 

The limits of integration for (5) do not depend on x, so a single set of 
fixed quadrature points can be used. 

The solutions of the Fredholm equation with kernel (2) is 

and the solution of the Volterra equation with kernel (4) is 

Note that both of these solutions involve differentiation of the given 
function, and that numerical differentiation is notoriously difficult. 



2 The Ill-Posed Nature of Integral Equations of 
the First Kind 

We might first approach these problem by, naively, approximating 
equation (I) as a matrix equation and solving this equation directly, 
For example, let 

Y1 <$/2 < - * .  < Yn 
be Gauss-Legendre quadrature points with corresponding weights {wi);, 
and choose a mesh of values {xi): with x; = yi for each 2 .  For the 
present discussion, we will take n to equal 50. 

Consider the matrix equation 

where the typical element of K is 

and the ith element of 9 is 

Let the singular values corresponding to IC be denoted where 
we can omit the superscript when the matrix to which the singular 
values correspond is clear from the context. We denote the matrices 
corresponding to discretizations with kernel (2) and (4) as K1 and K2, 
respectively. 

The condition number of K1 is 

This matrix equation is ill-conditioned, and noise in the computer rep- 
resentation of g can result in a noisy 'solution' to the matrix equation 
which is very different from the discretized solution to the continuous 
problem (1). 

Actually, the direct solution of 



is feasible, using double precision arithmetic and a good Gaussian eli- 
mation or singular value decomposition algorithm. But in general this 
is not the approach to take for integral equaiions of the first kind. 

These matrix equations are ill-conditioned because the correspond- 
ing integral equations are ill-posed: small changes in g can cause large 
changes in the solution f .  This is intuitively reasonable because the 
process of integration, with respect to a reasonably smooth kernel, will 
tend to produce a result which is 'smoother' than the integrand. In 
solving the equation, we are inverting this smoothing process, and so 
we encounter the difficulties associated with numerical differentiation. 

3 Regularization Methods 

One approach to solving the equation (1) is the method of regularization 
of Tikhonov (1962) and Phillips (1963) (see also Tikhonov and Arsenin, 
1977, and Groetsch 1984). The basic idea is very simple. Because the 
integral equation (1) is ill-posed, we do not want to solve any discretized 
version of this equation exactly. Rather, we would like to find a smooth 
function which nearly satisfies the equation. So, instead of solving the 
matrix equation (a), we minimize the- quadratic form 

where L is positive semi-definite, and is chosen so that Z*LZ will tend 
to be large when z is not smooth. A positive constant, A,  determines 
the relative importance of the first (least-squares) and second (penalty) 
terms of the functional U ( z ) .  When X is small, then the minimum will 
occur near an exact solution f. As X is increased, increasing weight 
is put on the smoothness of the solution, and less on 'fidelity' to the 
equation (8). 

4 Richardson's Algorithm and Implicit Regular- 
izat ion 

Another approach to solving ill-conditioned linear matrix equations 
is by iteration. For the discussion in this section, we will consider 
(8), where K is positive definite and K ( K )  is large enough for direct 



solution without regularization to not be a viable approach. We choose 
an arbitrary first approximation f", and define the iteration 

where 0 is a positive constant and B is a peconditioning matrix cho- 
sen to accelerate convergence. When B = I, (14) is the well known 
Richadson algorithm, first proposed in Richardson (1910) for the so- 
lution of sparse linear systems of equations. The kth approximation to 
the solution can be written as 

f k  = =~f+t b for k > 0. 

It is easy to show that jk anverges to a solution f for arbitrary right 
hand side g if, and only if, all of the eigenvalues of I - t9B-llr' are 
within the unit circle. 

Another feature which is clear from the form of (14) is that if K is 
acting as a linear smoother, then the iteration should be numerically 
stable, at least for the initial iterates. If a matrix is obtained from an 
integral equation, and if the kernel of this equation is bounded and not 
highly oscillatory, then this matrix will act as a smoother. Both (2) 
and (4) meet these criteria. 

Let f be the solution to (8), and define the difference between the 
kth approximation and this solution as 

so that 

Let K-I be the inverse of K, and define the quadratic form 

Differentiating Q ( z )  with respect to z ,  and using the fact that K is 
positive definite, we observe that 

min Q(Z) = ~(6). (19) 

Note the similarity between (13) and (18). We have shown that each 
step (14) corresponds to solving a penalized least squares problem, 



where the penalty term is determined by the kernel K. Further discus- 
sion of the relationship between linear smoothers and penalized least 
squares can be found in Buja, et. al. (1989). 

Although (14) does not make explicit use of regularization, at each 
iteration regularization is implicit in this algorithm and the character 
of this regularization is determined by the kernel itself. To see how 
the second term in (18) can penalize 'rough9 iterates, assume that K is 
symmetric with (positive) eigenvalues A; and corresponding eigenvec- 
tors t i ,  that is 

n 

where 
A, > A ,  3 ... LAn > O .  

Let the expansions of Sk in terms of these eigenvectors be 

We will assume further that (8) has been scaled so that X I  5 1, and 
we take 4 = 1 and B = I. In terms of the spectral decomposition (20) 
of K, the penalty term (at the minimum) becomes 

Since the matrix K is a discretization of a smooth function, the more 
oscillatory eigenvectors will correspond to small eigenvalues. Compo- 
nents of 6"n the directions of these highly oscillatory eigenvectors will 
have a large contribution in the penalty term, hence the minimum of 

. Q will tend to occur at a vector hk which has small components in 
the direction of the 'rougher' eigenvectors - that is, Sk will tend to be 
smooth if K is smooth. 

If the algorithm (14) is convergent, and if the matrix equation (8) 
is sufficiently ill-conditioned, then as the iterates approach the solution 
they will eventually become noisy and meaningless. However, the rate 
of convergence of Richardson's algorithm for this problem can be easily 
shown to be governed by the powers (1 - A;)k. Once the (smoother) 
components in the direction of the the largest eigenvalues have been 



nearly determined, the convergence rate will become very slow. A 
practical implication of this is that the iteration eventually becomes 
useless, often before instability in the solution beconies noticable. 

Iteration, therefore, is equivalent to regularization with the recipre 
cal of the number of terms taken in the iteration corresponding to the 
smoothing parameter. This observation was apparently first made by 
Bakushinskii (1967). 

5 A Preconditioned Richardson Algorithm 

consider the integral equation ( I ) ,  where we assume that the kernel, 
k ( x ,  y), is positive and bounded. We transform the equation (1) into a 
new equation, having the same solution, as follows: 

where 

and 

We now discretize (23) as discussed above, and apply the Richardson 
iteration (14) with 8 = 1. 

If we let K denote the matrix in the discretization of (l), and k 
denote the corresponding matrix from (23), we have 

where B is a diagonal matrix with ith element equal to the sum of the 
elements in the ith row of I<. The preconditioned matrix K is thus 
a stochastic matrix, and by the Perron-Frobenius theorem (e.g., Horn 
and Johnson, 1989), K has largest eigenvalue equal to one, and all 
other eigenvalues on or within the unit circle. 

There are several ways of motivating this particular choice of a pre- 
conditioning matrix. From the point of view of numerical analysis, 



scaling a matrix in this way tends to make the matrix better condi- 
tioned. The following is a special case of a theorem proved by Van der 
Sluis (1969, p.18): 

Theorem 5.1 Let K be a nonsingular matrix, and let I( . (I, be any 
Holder norm, or the Fmbenius norm. Let D be a diagonal matrix. 
Then the following measures of the condition of DIC are minimized 
when the rows of D K  each sum to one: 

Although x1 and xz each differs from the usual condition number n, all 
three quantities are reasonable measures of the condition of a matrix. A 
preconditioning which minimizes XI and XQ can be expected to usually 
reduce K as well. ' 

A simple probabilistic argument provides another motivation for 
scaling the rows to sum to one. Since k is bounded and positive, it is 
propotional to the joint density of two random variables, say X and Y. 
We write this as 

TX,Y(X, Y) = c ~ ( x ?  Y)? (27) 
where the constant c is 

The normalized kernel (24) is exactly the conditional density of the 
random variable Y given the random variable X: 

Richardson's algorithm applied to (23) with 9 = 1 is 

Since the integral on the right hand side of (30) can be interpreted as . 
the conditional expectation of the difference f - fk, we can rewrite (30) 
(in terms of the random variables X and Y )  as 



In words, the kth step in this preconditioned Richardson algorithm 
(with 9 = 1) is the conditipnal expectation of the difference between 
the solution and the approximation f k. 

This probabilistic interpretation suggests that the preconditioned 
Richardson algorithm will converge rapidly when the conditional ex- 
pectation, with respect to the density (29), of f - f k  is nearly equal to 
f - f k .  For this to occur, X and Y must be comlat ed random variables 
- the more highly X and Y are correlated, the closer fk+' - f k  will 
be to f - f k .  For these random variables to be correlated, the original 
kernel k ( x ,  y) must be peaked about the line x = y. The more highly 
the kernel is peaked, the more rapidly convergent the preconditioned 
Richardson algorithm will be. The limiting case of perfect correlation 
(i.e. X = Y) is achieved by the &function kernel 

6 A F'redholm Example 

We now illustrate the above discussion with two examples. First we 
consider the Fredholm integral equation of the first kind with kernel 
(2) and right hand side (3). We discretize the problem using 50 point 
Gauss-Legendre quadrature as discussed in Section 2. The largest 
eigenvalue for the matrix equation (8) is ,1013913, which is approx- 
imately equal to n-', the largest eigenvalue of the corresponding in- 
tegral equation. For the Richardson iteration without preconditioning 
( B  = I), we take 0 to equal the reciprocal of the largest eigenvalue, 
i.e. 9 w 9.863, so that the largest eigenvalue of 9K is equal to 1. For 
the preconditioned Richardson algorithm, the largest eigenvalue is ap- 
proximately 1, so we let 0 = 1. Fifty iterations of both methods are 
compared in Figure 1. The preconditioned method gives an approxi- 
mation very near the solution 

before the convergence rate begins to decrease dramatically. The method 
without preconditioning is still far from the solution at the 50th itera- 
tion, and, since by the 50th iteration the steps taken at each iteration 
are very small, it will take many iterations to get appreciably closer to 
the solution. 



Another way of seeing the dramatic effect preconditioning has had 
on the convergence rate is to examine the distance, in La norm, to the 
solution as a function of the iteration index. This comparison is made 
in Figure 2. 

Both of the Richardson algorithms are numerically stable, which 
we would expect given the discussion in Section 3. We would expect 
that eventually the approximations will become less smooth, as the 
components in the directions of eigenvectors corresponding to smaller 
eigenvalues begin to have an effect. Since the right hand side for this 
example is smooth, and since preconditioning has reduced the condi- 
tion number substantially (to 810.34), it would require an unreasonable 
number of iterations to observe the approximations depart from the 
true solution, and even then the deviation would be slight. In order to 
see an effect in a reasonable number of iterations, we added a compo- 
nent, with coefficient .01, in the direction of the 25th singular vector 
of the matrix Kl to the right hand side (3). The Fourier coefficients 
of the perturbed right hand side are presented in Figure 3, and a plot 
of this perturbed function is given in Figure 4. In Figure 5, we display 
50 iterations of the preconditioned algorithm with the perturbed right 
hand side, and in Figure 6 we give the L2 distance to the solution (33) 
as a function of the number of iterations. Notice that the approxima- 
tions are closest in norm to this solution at the 10th itertation. From 
that point on, the iterations move further away from the solution which 
corresponds to the unperturbed right hand side as they approach the 
exact soltuion, which corresponds to the perturbed right hand side. 

7 A Volterra Example 

As an example of a Volerra equation, we take the numerical differen- 
tiation problem with kernel (4). This example is useful because it is 
easy to examine the nature of the 'implicit regularization' analytically. 

To precondition the kernel, we divide by 

A little algebra shows that, if g(x) = xa+'/(s + l), then f k  is given by 



Without this preconditioning, it is easy to show that the Richardson 
iteration does not converge for any 9. 

Assume that the right hand side of this Vofterra equation has a 
convergent Taylor series expansion: 

From the linearity of the Volterra integral operator and (35) we see 
that 

If g is a smooth function plus noise, then f k  will reflect the smooth 
components initially, since these will correspond to fairly small values 
of s. Eventually, the solution will become rougher, but only when 
(1 - 1 1 ~ ) ~  becomes small for fairly large s. 

Numerical experimentation suggests that, for reasonably smooth 
right hand sides, the iterative algorithm outlined' in this section can be 
useful for numerical differentiation. 
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ABSTRACT 

This paper presents an analysis for the superharmonics of a forced nonlinear vibration 
problem involving small parameters, using a generalized harmonic balance method. A nonlinear 
ordinary differential equation with several nonlinear terms and a periodic forcing function is 
considered. For the case of superharmonic oscillations of order 2, the key equations for the 
obtaining the information on the superharmonics wiU be derived, including a new, nonlinear 
ordinary differential equation of a slow varying function compared with the original dependent 
variable. Using these equaaons, the steady state solution and its stability behavior can be 
calculated Results for a special set of parameters are obtained, including a stable node for the 
steady state solution and the associated van del Pol plane. 

' The otiginal version of this paper appeared in the Proceedings of the 13th World Congress on 
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1. INTRODUCTION 

It is well known that nonlinearities can cause sub- and super-harmonic excitations in vibratory 
systems. The analytical understanding of such phenomena is often difficult to obtain. It has been 
shown that the method of multiple scales can be used to solve such problems as demonstrated 
in several papers by Nayheh [1,2]. However, the procedures involved are quite complicated and 
requires recursive solution of differential equations, the elimination of secular terms and 
reconstitution, all of which are nontrivial procedures. More recently, in a paper by Noble and 
Hussain [3], an expansion method was introduced together with suggestions of several other 
approaches which may be used as alternatives to obtain pertinent information. One of these is 
the genralized harmonic balance method (GHB) [4,5,6]. This variant of the harmonic balance 
method consists of two parts: &st, to derive the form of solution using only the basic steps of 
multiple scales, and then, solve for the coefficients of various harmonics. In this approach, the 
elimination of the secular terms is accomplished implicitly, thus avoiding the trouble of solving 
recursive differential equations. This paper begins with a general nonlinear ordinary differential 
equation with several nonlinear terms and a periodic forcing function, a specific case of 
superharmonic oscillations of order 2 will be investigated. Next, the key equations are derived, 
from them the essential information on the superhmonics can be obtained. Finally Numerical 
results are presented on the steady solution and the stability behavior for a special sets of 
parameters. 

2. DERJYATION OF THE KEY EQUATIONS 

We shall consider the following rather general differential equation: 

d%/d?-t-u+2~p(du/dt)+&cl,u~f &'a,u3 

+~a~(d~/dt)~+~~qu(du/dt)~=2f~os(Qt) (1) 

where u(t) is the unknown function p and &, k=2,3,4,5 and 6, are given constants, E is the small 
perturbation parameter; f and $2 pertain to the magnitude and fkequency of the forcing function. 
For superharmonics of order 2, one has 

where w is the "fundamental" frequency of the nonlinear vibration, which is a perturbation from 
that of the linearalized system cq,, taking to be unity in (2) without a loss of generality. We shall 
derive a two-term approximate solution u = h + ~ u ,  for equation (1). Using a procedure described 
previously in [4,5], it can be shown easily that that the final form of the solution u, which is 
good to the order of E must have the following form: 

~=EU,+[(U,A+U,A~)+E(U,A~+U,A~)+CC] (3) 

where cc stands for the complex conjugate. The following symbols are introduced: 



Eq. (1) can then be written as 

Here we note that S is a slow varying function compared with A in the sense that while Wdt 
is of 0(1), dS/dt is of O(E). Since we are using the small parameter E as a means to identify 
quantities with different order of magnitudes, it is assumed that all the symbols other than E are 
of O(1) unless stsated otherwise. We shall also use the fact that 

where an overbar denotes the complex conjugate. The procedure here is to substitute (3) in (1') 
and set to zero the coefficients of A,, k=0,1 and 2, since any higher harmonics will be of O(8) 
or higher according to (3). We first obtain the following approximate expressions (in other words, 
the right hand side should have added "+ terms of O ( E ~ )  and higher" in each of these equations): 

Since u3 appears with a coefficient of 2 in (I), one only needs to keep tams of O(1) in the 
expansion: 

Similarly, one keeps O(E) terns in (d~/dt)~, but only O(1) terms iri u(dy/dt):: 

We now substitute (3) and (6)-(11) in (1')' collect terms of like power of A, k 9 , l  and 2, and 



then set the coefficients to zero. The resulting equations, for the coefficients of A,-,, A, and A, 
respectively, are: 

From (12), (15) and (16), U,, U, and U, can be solved directly in terms of U, and U,: 

u,-,=-2(a,+a4)u, U , - ( ~ D ) ( ~ ~ + Q U ,  6, (17) 

u3=(4/5)(2%-a4)u& (18) 

U4=(h-a4)u,2/3 (19) 

In equation (13) and (14), however, it is observed that some terms are of one order of E greater 
than the others. The terms of higher order in E can thus be less accurate than others and still 
yield the same order of approximation in these equations. One then can solve these equation f i s t  
using only the dominant terms. Then, substitute the results back into the tenns of higher order 
in &, solve the full equations and obtain improved results. The immediate purpose here is to 
reduce (16) into a f ist  order differential equation in U, and express a l l  the other U,s in terms of 
UP 

Using the dominant terms in (13) and (14), one has 



Equation (20) is used in the terns of order E in (13) to yield the improved U,: 

Now, the terms in (14), which are of higher order in E, contain such quantities as d2udd?, 
dUddt, dUl/dt, U,, U,, U,, U,. These expressions can be obtained by using (20), (21), their 
differentiations (for d%dd? and dU,/dt), by using (17), (18) and (19). The final form of (14) can 
be written as the following: 

where 

with 
c3=2a(20&- 17a4)/27 

and 
c,=(1440~+120a,-1472~2-368~a4-128a,2')/135 

The key equations (3), (23), (17), (18), (19) and (22) can be further simplified by the 
folIowing change of variables. Let 

U,=V,S,, Vk=UkS-k, k=O, 1 ,. .4 

where S was defined in (4). One also has 

dU~dt=dV~dt+ikECJVk/2 (26) 

In terms of V,, equations (4), (23), (17), (18), (19) and (22) become respectively 

U=&V,+[V,B+V,B~+E(V,B~-I-V~B~)+C~]I (27) 

vo=-(3~~)(a,+a4)P2ts+a,)v2 9, (28) 

Vl=4f/3+(1/'9)E[8(o-2ip)f- 1 6(2g+a4)N2 (29) 

with 



Equation (20) is used in the terms of order E in (13) to yield the improved U,: 

Now, the terns in (14), which are of higher order in E, contain such quantities as d2udd?, 
dUddt, dU,/dt, U,, U,, U,, U,. These expressions can be obtained by using (20), (21), their 
differentiations (for d m ?  and dU,/dt), by using (17), (18) and (19). The frnal form of (14) can 
be written as the following: 

where 

with 

and 
cp(1440q+120a,- 1472%2-368qa4- 128az)/135 

The key equations (3), (23), (17), (18), (19) and (22) can be further simplified by the 
following change of variables. Let 

Uk=VkSk, V,=U,S", k=O, 1,..4 (25) 

where S was defined in (4). One also has 

dUJdt=dVJdt+ik~oVJ2 (26) 

In terms of V,, equations (4), (23), (17), (18), (19) and (22) become respectively 

with 



where, in (29), 

Hence the original differential equation (1) has been reduced to (32), where V, is the unknown 
function. Once V, is solved, other V,s can be obtained from (28) through (31). Then u(t) is given 
by (27). 

To illustrate what kind of information one can extract from the equations derived so far, we 
shall obtain the magnitude for a superhannonic in the steady state solution and determine the 
stability of such a solution. First, we shall write the needed equations in terms of real variables. 
To this end, let 

where now p,, y,, V,=x/2 and VF-y/2 are all real functions of L One also has 

Note that we have introduced two new variables x and y such that 

to save some writing. Substitute (34) and (35) in (32) and separate the real and imaginary part, 
one has two equations for two real variables x and y: 

For steady state solutions, we require that the amplitudes and phase angles of various 
harmonic components to be constant with respect to time t, 



and, what is equivalent: 
dx/dt=O, dyIdt4 

It should be noted that (39a) actually also quarantee the validity of (38) for k other than 2. 
This fact can be easily observed fiom the relations of (28)-(31), which relate V,, k=0,1,3 and 4, 
to v,. 

Now, substitute (39b) in (37), one has 

Some numerical results will be presented in determining the presence of superharmonic 
oscillations for the following given set of parameters: 

This is a very simple case due to the fact that c, vanishes as can be seen from (24). Thus (40) 
become linear and the solution can be- easily obtained as 

Hence, from (34), the magnitude of the super-harmonic oscillation of order 2, p, is 

Next, equations (37) are integrated numerically. The result is. the so called van del Pol 
plane [7] as show in Figure 1. As indicated in this plot, solutions converge to the steady state 
solution obtained above as the time increases. Hence the steady state solution is stable and the 
point "A" of (42) is known as a stable n&. Results for more general cases will be reported in 
the future. 
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FIGURE 1. Ihe van del Pol plane for the superharmonics of order 2 for the set of parameters 
given in equations (41). Point "A" shown is a stable node. 
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Introduction 

Elastic and viscous stresses in rubberlike materials can be modeled 

using strain energy density functions. The large strain elastic 

(hyperelastic) deformations are often modeled with the Rivlin strain 
1 invariant power series . Similarly, large strain viscous deformations of 

rubberlike materials (vi~cohy~erelastic) can be modeled using an internal 

solid theory with hyperelastic solids 2 p 3 9 4 3 5 .  The energy function's 

material coefficients are found by least square fitting to the classical 
4 

tension, shear, and equibiaxial stress-stretch tests . These least squares 

fits typically produce energy functions which are not stable for 

deformations other than those covered by the test data. That is, when 

strain states not included in the test data are considered the models often 

suffer from the flaw that (for isothermal deformations) they predict a 

decrease in the solid's internal strain energy for an increment of applied 

stress which does positive work on the solid. This conservation of energy 

statement is known as Drucker's postulate on stability. Such a flaw cannot 

be accepted since computations for complex deformations will include strain 

states which are not the same as those used to determine the energy density 

function. Energy conservation will then be violated somewhere in the solid 

(or the computational algorithm will fail, etc.) 

In this effort we derive formulas for the constraints on the 

coefficients of a hyperelastic Rivlin (third order invariant expansion) 

energy density function which enforce Drucker stability. Then, an example 

is presented in which uniaxial and equibiaxial stress-stretch data is least 

squares fit to both an unconstrained and a constrained third order invariant 

* New London, CT 

** Newport, RI 



Rivlin energy density functian. The stability of these functions i s  then 

addressed. It is shown that the simple constraint of requiring the Rivlin 

series coefficients to be positive is a practical way to determine the 

energy density function. We note, however, that the constraint of positive 

coefficients is not sufficient for stability (that is, the constraint 

equations must still be checked). 

Least Squares Fit to Rivlin Energy Function 

The stress-strain response of rubber, without consideration of 

viscoelastic effects, is modeled with strain energy density functions. 

There are numerous algebraic forms available for the energy function. 

Typically, these functions are represented by expansions in powers of the 

strain invariants or stretch ratios. In this effort we use the following 

Rivlin energy function. 

2 2 where I = hl + h2 + Xg 2 
1 

and I2 = l / h l Z  + 1 / X 2 '  + l / h 3  2 

The quantities I1 and I2 are invariants of the deformation and h l ,  h2, hg 

are the principal stretch ratios. The coefficients Gem are typically 

computed by the following test and least squares fitting procedure'. The 

engineering stresses for uniaxial tension and shear, and for eauibiaxial 
T B tension computed using equation 1 (o , oS and o respectively) are 

where * = T, S, or B, 



and X = the stretch ratio measured in the direction of loading (i.e., the 

extensional stretch, see reference 1). The invariants for tension are given 

by 

2 2 
1 = A + 2 / h  and I2 = ZA + 1 / A 2  ( 6  

for shear by 

and for equibiaxial tension by 

2 4 I1 = 2A + l/X and I2 = 2 1 5  + h 4 

An error function I1 is constructed from the experimental data as follows 

(* = T* s ,  B)¶ 

* 
where "e" implies the measured data, o implies the measured engineering * e 
stresses and, u (A,) implies the engineering stresses computed using the 

measured stretch, he ,  in equations 3, 4, and 5. The constants Gem are then 
selected to minimize the least squares error given by equation 9. They are 

computed as follows. Let 

and 

Then, equation 9 becomes 



* 
II = constant - 2 1. 1 \ {A*(A~)}~{c} 

* e 

Let 

and 

Then, the least squares error function II becomes 

T T ll = constant - 2{b) {C) + {C) [A]{C) 

and the minimum error occurs when the first variation of ll is zero. That is, 

when 

Stability Requirement 

It is common practice to perform at least two of the stress-stretch 

tests mentioned above and then to find the constants {C) using equation 16. 

Recently, the general purpose nonlinear finite element code ABAQUS" has 

added a routine to check the user's energy function for Drucker stability 

under several specified deformations (tension, compression, shear, and 

equibiaxial tension). We outline this stability check here for isotropic 

materials. Let dzi = an increment in the i'th principal Cauchy stress and 

d~~ = an increment in the corresponding strain at any point in the solid. 

Then Drucker's stability postulate states 

The Cauchy stresses are given by 



where p = the hydrostatic pressure. For the case of plane stress we have 

z3 = 0 and find 

Using the chain rule it can be shownl0 that 

where 

and 

The material is then stable (equation 17 satisfied) when the matrix [Dl in 
equation 20 is positive definite. This is true when 

and > O  %lD22 - D12 

Given an energy function and a strain state one can compute the matrix [ D l  

in equation 20 and use equations 22 and 23 to check for stability. 



Constraints for Stable Energy Function 

Checking fox and verifying stability with equations 22 and 23 above for 

specific strain states (tension, compression, shear, equibiaxial, etc.) does 

not assure stability elsewhere in strain, and checking for stability at each 

element's integration point in a nonlinear finite element analysis is 

computationally expensive. In this section we derive the constraints on the 

constants {C) in equation 15 so that the constrained least squares fit will 

satisfy equation 22 and 23 for all possible strain states. We note that 

applying these constraints will increase the least squares error (the data 

fit will not be as good) but the resulting energy functional will be stable 

everywhere, Let 

and 1x1 = ( i ) , {Y} = ( i ), {Z} = ( :y ) 
We then find that 

and 
A12 = {wlT{z) + (x - z)(y - z ) { x ' l T [ w 1 { ~ )  

so that a sufficient condition for the stability requirement of equation 22 

is 

~ r n  2 0 ( 2 6 )  

We now consider equation 23 and determine additional constraints (beyond 



equation 26) to assure stability (sufficient constraints). Using equation 

25 we find 

Since x, y, z > 0 ,  Wi t 0 and W i j  2 0 ,  w e  have the stability requirement 

of equation 23 as 

W e  note that equation 28 is not a necessary condition for stability. It is 

only a sufficient condition, (it is not even a sufficient condition unless 

equation 26 is true). 

Let F = I1 - 3 and q = I - 3 then 2 

N N 

where N = the highest order to which the invariants are raised in the energy 

function. The constraints are computed as follows. 

N=l, First Order Invariant 

W e  have 

w = C l o t  + c o p  

and G = 0 always. 



N=2, Second Order Invariant 

We have 
2 

W = CI06 + CO1q f CI1Efl + CZOE + CO2q 
2 

and G > 0 (by direct computation) when 

2 A = 4C20C02 - Cll L O 

N=3, Third Order Invariant 

We have 

3 3 

and G > 0 becomes 

2 
G = A + BE + Cq + DE + ESq + 1 0 

where 

and F = 12 C03C21 - 4cf2 

By direct calculation it can be shown that G > 0 for all 5 ,  q 1 0 when 

and 2 4FD - E 1 0 

Equations 36 represent the constraints which when combined w i t h  the 

constraint C 2 0 assures stability of an incompressible hyperelastic 
Qm 

material in plane stress modeled with a third order invariant Rivlin energy 

functional. 

Unconstrained and constrained models for a filled butadiene - styrene 

copolymer 

Experimental data in uniaxial and equibiaxial tension1' for a filled 

butadiene-styrene copolymer was fit to the third order Rivlin energy 



function of equation 1. The material tested had been conditioned by 

repeated stretching beyond the levels reported below and was allowed to 

recover for at least fifteen minutes prior to testing. The uniaxial tension 

data was obtained by pulling at a slow strain rate (0.02 in/in/min) and the 

equibiaxial data was obtained in a flat disk inflation experiment in which 

the material- was allowed to creep for about five minutes at constant 

pressure prior to recording the inflated shape. 

The error function of equation 15 was minimized both with and without 

the constraint C 2 0. The stability constraints of equation 36 were 
Ern 

checked after the constrained minimum was found. Figures 1 and 2 show plots 

of the unconstrained and constrained least squares fits. Also, the 

classical uniaxial shear test response was computed and shown for each case. 

The constrained least square model satisfied the stability equations 36. 

The unconstrained model was obviously unstable and also gave what appears to 

be a poor approximation in shear. 

Summary 

A set of constraints were derived for the coefficients of a third order 

invariant Rivlin energy function which assure Drucker stability in plane 

stress. Data for a filled butadiene-styrene copolymer was fit to the Rivlin 

function with and without the constraint Ch 2 0. The constrained model was 

stable and the unconstrained model was not. 
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W is stable. 

A = Test data. 

---  = Least squares fit. 

Figure 2. Nominal stress vs stretch for the constrained ( C  2 0) least Em 
squares fit. 
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ABSTRACT. T h i s  paper i n t e r p r e t s  t h e  phenomenon of high-Tc superconductiv- 
i t y  i n  t h e  oxide, heavy fermion and organic salt superconductors a s  a coherent 
spacetime s t a t e  of e l e c t r o n s  i n  a two-dimensional systernof Cooper e l e c t r o n p a i r s .  
A t  a t r a n s i t i o n  temperature t h e  e l e c t r i c a l  r e s i s t a n c e  of a substance whose e lec-  
t rons  a r e  i n  a coherent spacetime s t a t e  can go t o  zero i n  two ways, t h e  f i r s t  i s  
the ordinary  BCS case  of superconduct ivi ty  t h a t  is assoc ia ted  with the  vanishing 
of t he  magnitude of t h e  measured r e s i s t a n c e ,  and t h e  second is  t h e  caseo f  coher- 
en t  spacetime superconduct ivi ty  t h a t  i s  assoc ia ted  with a value of a12 f o r  t h e  
i n t e r n a l  phase angle  05 t h e  r e s i s t a n c e  and a corresponding zero va lue  f o r  t h e  
measured r e s i s r ance .  The superconducting s t a t e  (T < Tc) of a high-Tc supercon- 
ductor is  descr ibed by a completely coherent spacetime s t a t e ,  while  t he  normal 
s t a t e  (T > Tc) of a high-Tc superconductor is described by a p a r t i a l l y  coherent 
spacetime s t a t e .  The normalized superconduct ivi ty  energy gap f o r  high-T, sub- 
stances is found t o  have t h e  va lue  (6/a)(3.52)/(1 - 413 8,) where Ba = r e l a t i v e  
i n t e r n a l  phase angle  of t h e  e lec t ron-e lec t ron  acce l e ra t ion  (force)  wi th in  a 
Cooper p a i r  of e l ec t rons .  A comparison of t h i s  formula with the experimental 
values of t h e  superconduct ivi ty  energy gaps of high-Tc compoundsgivesthevalues 
of 0, f o r  p a r t i c u l a r  l a t t i c e  s t r u c t u r e s  and t h e i r  assoc ia ted  phonon i n t e r a c t i o n s  
with the  e l ec t rons .  Small values  of 8, suggest t h a t  e l ec t ron  pa i r ing  is  weak. 
The large va lues  of t h e  normalized superconduct ivi ty  energy gaps fox t h e  high-T, 
superconducting compounds is  due t o  t h e  f a c t o r  6/1r which a r i s e s  fromthecomplete  
spacetime coherence of t h e  superconducting state. Thermodynamic processes  i n  
high-Tc substances a r e  examined. One of t h e  experimental techniques f o r  de t e r -  
mining the  c h a r a c t e r i s t i c  parameters of high-T, superconductors u t i l i z e s  t h e  
pho toe l ec t r i c  e f f e c t .  Because t h e  e lec t ron-e lec t ron  i n t e r a c t i o n  is  weak i n  t h e  
Cooper p a i r s  of high-T, superconductors,  t h e  Fowler theory of t h e  pho toe l ec t r i c  
e f f e c t  f o r  ord inary  metals ,  t h a t  i s  based on a nonin terac t ing  e l ec t ron  gas ,  i s  
extended t o  t h e  cases  of t o t a l  and p a r t i a l  coherence of t he  spacetime s t a t e s  
t h a t  descr ibe  t h e  superconducting and normal s t a t e s  respec t ive ly  of high-Tc 
superconductors,  

1. INTRODUCTION. A spec tacular  discovery of physics  i n  recent  years  was 
the observat ion of high-Tc superconduct ivi ty  i n  a c l a s s  of planar  copper oxide 
compounds wi th  Tc % 30JC.l-l1 A l r e a d y  superconducting mater ia l s  with Tc above 
l i q u i d  n i t rogen  have been c rea t ed ,  and the  p o s s i b i l i t y  of room temperature and 
higher  superconductors is  now considered l i k e l y .  The h ighes t  t r a n s i t i o n  tem- 
pera ture  t o  this dare  i s  Tc % 125~. l - ' '  I n  addi t ion  t o  t h e  high-Tc p l ana r  cop- 
per oxides (such as t h e  famous 1-2-3 yttrium-barium-copper oxide) t he re  are two 
other  groups of superconductors wi th  unusual p rope r t i e s .  These a r e  t he  organic  
s a l t  superconductors (such as t h e  Bechgaard s a l t s )  and the  heavy fermion super- 
conductors (such a s  UPt3). 1-1 1 These d i scove r i e s  have produced an in t ense  re- 
search e f f o r t  t o  c o r r e l a t e  high-Tc superconduct ivi ty  with t h e  atomic s t r u c t u r e  
of t hese  ma te r i a l s  i n  order  t o  ob ta in  a t h e o r e t i c a l  p i c t u r e  of t h e  phys ica l  
processes t h a t  cause high-Tc superconduct ivi ty .  1 2  



A. Basic Concepts. 

High-Tc superconduct ivi ty  may not  be descr ibed by t h e  Bardeen-Cooper- 
S c h r i e f f e r  (BCS) theory t h a t  desc r ibes  ord inary  me ta l l i c  superconduct ivi ty  i n  
terms of t h e  phonon-mediated weakly coupled e lec t ron-e lec t ron  a t t r a c t i v e  i n t e r -  
a c t i o n  and t h e  formation of Cooper e l e c t r o n  p a i r s  i n  a r e l a t i v e  s - s t a t e  ( the  
BCS s i n g l e t  p a i r i n g  wi th  1 = 0) The BCS m e t a l l i c  superconductors and some 
of t h e  high-Tc superconductors e x h i b i t  bulk superconduct ivi ty  i n  t h e  sense that 
t h e  r e s i s t i v i t y  goes t o  zero i n  a l l  t h r e e  c rys t a l log raph ic  d i r e c t i o n s  a t  a com- 
mon t r a n s i t i o n  temperature.  I n  genera l ,  however, both t h e  superconducting s t a t e  
(T < Tc) and t h e  normal s t a t e  (T > Tc) of high-Tc superconductors a r e  h igh ly  
anisotropic. '-" For t h e  normal state of t h e  copper oxides,  t h e  r e s i s t i v i t y  i n  
t he  Cu-0 planes pab is  e s s e n t i a l l y  m e t a l l i c  while  t h e  r e s i s t i v i t y  i n  t h e  out-of- 
plane d i r e c t i o n ,  pa, o r  pbc , is l i k e  t h a t  of a semiconductor having t h e  ord inary  
conduct ivi ty  f o r  oxides.  This aniso t ropy  of t h e  Cu-0 mate r i a l s  i s  a l s o  exh ib i t -  
ed by t h e  heavy fermion and organic  salt superconductors . '~ ' l  Conf l ic t ing  ev i -  
dence e x i s t s  t h a t  shows t h a t  t h e  superconducting s t a t e  of a high-Tc s u  erconduc- 
t o r  may no t  be descr ibed by t h e  BCS theory of Cooper e l e c t r o n  p a i r s .  '-'I For 
in s t ance ,  t h e r e  appears  t o  be a c l o s e  connection between non-BCS superconduct- 
i v i t y  and antiferromagnetism which is  no t  y e t  explained. '-l1 Also, it: should be 
pointed out  t h a t  t h e  normal s t a t e  (T > T,) of a high-Tc compound may not  be an  
ordinary Fermi l i q u i d  because i t  e x h i b i t s  pecu l i a r  r o  e r t i e s ,  and the re fo re  a 
desc r ip t ion  of t h e  T > Tc s t a t e  would be of value.  "-" However, some evidence 
suggests  t h a t  an  ord inary  Ferrni l i q u i d  desc r ip t ion  of t h e  normal s t a t e  is  car-  . 
reCt.l',''-l' 

Several  experimental methods have been used t o  determine the  mechanism of 
high-Tc superconduct ivi ty .  These inc lude  Raman s c a t t e r i n g ,  i n f r a red  r e f l e c t i v -  
i t y ,  nuc lear  magnetic resonance, Knight s h i f t ,  nuc lear  s p i n - l a t t i c e  r e l a x a t i o n  
l i n e s ,  neutron s c a t t e r i n g  i n t e n s i t i e s ,  u l t rasound,  c i r c u l a r  dichroism, s p e c i f i c  
h e a t ,  e l e c t r i c a l  r e s i s t i v i t y ,  magnetic p rope r t i e s ,  pos i t ron  emission, coldemis-  
s ion ,  and photoemission. l-' There a r e  many o the r  experimental techniques t h a t  
a r e  not  l i s t e d  here .  Only t h e  p h o t o e l e c t r i c  e f f e c t  is  considered i n  t h i s  paper.  

Superconductors a r e  o f t e n  descr ibed  a s  being weakly o r  s t rongly  coupled 
accordin'g t o  t h e  s t r e n  t h  of t h e  e lec t ron-e lec t ron  a t t r a c t i v e  i n t e r a c t i o n  i n  t h e  
Cooper e l e c t r o n  p a i r s .  ?-" It is p resen t ly  thought t h a t  t h e  s t r e n g t h  of t h e  e lec-  
t ron-electron i n t e r a c t i o n  is r e l a t e d  t o  t h e  va lue  of t h e  dimensionless r e l a t i v e  
superconduct ivi ty  energy gap given by1-' ' 

where A '  = r e l a t i v e  superconduct ivi ty  energy gap, 2 A  = f u l l  superconduct ivi ty  
energy gap, k = Boltzmann cons t an t ,  and Tc = superconduct ivi ty  t r a n s i t i o n  tem- 
pera ture .  For a BCS superconductor 1-11 

where i n  t h e  no ta t ion  of t h e  p re sen t  paper t h e  subsc r ip t  i t  = incoherent time 
t h a t  is  a s soc i a t ed  with t h e  BCS theory .  The BCS theory is based on weak cou- 
p l ing .  When a supe~conduc to r  h a s  A '  > 3.52 i t  is  genera l ly  r e f e r r ed  t o  i n  t h e  
l i t e r a t u r e  as  being a s t rong ly  coupled superconductor. Measured va lues  of A '  



f o r  high-Tc superconductors are as high as 10 .'-l1>l 4' 9-22  Many theo r i e s  have 
been developed t h a t  a t tempt  t o  desc r ibe  the b a s i c  mechanism of s t rong ly  coupled 
superconduct ivi ty  and the  pecu l i a r  normal s t a r e  p r o p e r t i e s  of t h e  nop-BCS super- 
conductors.  1-11 Later  i n  t h i s  paper i t  w i l l  be  shown t h a t  the l a r g e  experimental 
va lues  obtained for A '  do not  neces sa r i l y  imply s t rong  coupling, but  a r e  i n  f a c t  
due t o  a coherent spacetime s t a t e  t h a t  exists i n  t h e  e l ec t rons  t h a t  c o n s t i t u t e  
t h e  Cooper pairs. It i s  suggested that, i n  f ac t ,  high-T, superconductor-s a r e  
weakly coupled systems whose e l ec t rons  e x i s t  i n  a coherent t i m e  state. 

B. Spacetime with Broken Symmetry. 

For space an'd time with broken i n t e r n a l  symmetries t h e  coo rd ina t e sa rewr i r -  
t en  as 2 3 - 2 5  

- - x = x e j e ~  t = te j e t  (3)  

where x = x , y  , z and where BX = i n t e r n a l  phase angles  of t he  c a r t e s i a n  coordi- 
n a t e s  and 0 t  = i n t e r n a l  phase angle  of the time coordinate .  The complex number 
volume can be w r i t t e n  as 

so t h a t  

v = xyz ev = ex + e f e z  
Y (5) 

and f o r  i so t ropy  0v = 30, .  The d i f f e r e n t i a l  changes i n  t h e  complex number space 
and time coordinates  a r e  given by 

where 

t an  B = t a e t / a t  
T t  

tan B = xaex /ax  
X X 

(8) 

where x = x , y ,  z. The l engths  of t he  time and space coordinates  a r e  given f o r  
p a r t i a l l y  coherent spacetime a s 2 3  

w h i l e  t h e  volume i n  p a r t i a l l y  coherent space i s  given by 

where 



tan flW = vaev/av (12) 

For coherent spacetime Btt = & = Byy = B Z Z  = ~ / 2  and BW = 1r/2 and from equa- 
tions (9) and (10) it follows that 

where t ,x , y , z and V = constants. 

C. Coherent Spacetime Theory of Non-BCS Superconductivity. 

Recently a new theory of high-Tc superconductivity was developed in which 
the characteristic properties of the superconducting state are attributedtothe 
fact that: for T < Tc both time and space for the electrons in a Cooper pair be- 
come coherent, and physical processes occur while t i m e  and space rotate in an 
internal space as in equation (13) . Far a spacetime with broken internal sym- 
metries, the complex number potential difference across the battery terminals 
situated in the x = x ,  y , z direction is written as23 

where WX = magnitude of the battery potential difference and €IWX = internal 
phase angle of the potential difference given by23 

The measured potential difference across the battery i n t h e x  direction (without 
current flowing) is given by 

W = W cos e 
xm X wx 

The co lex number current in a conductor situated in the x direction is writ- 
ten as 3 

- 
I = I e  j01, 
X X 

(17)  

where IX = magnitude of current and 0 1 ~  = internal phase angle of the current 
which is given by23 

assuming that Btt  = 0 which means Bt  = constant. The measured current in the x 
direction is then given by 

The complex number resistance in the x direction is given by23 



where the  magnitude and i n t e r n a l  phase angle of t h e  r e s i s t a n c e  are given by23 

where RX = magnitude of r e s i s t a n c e  and e R X = i n t e r n a l  phase angle  of t h e  r e s i s -  
tance.  The measured r e s i s t a n c e  of a conductor is given by23 

R R cos 0 = R  cos(20 - Bt) 
xm X Rx X X (22) 

where R4 , = measured r e s i s t a n c e  i n  t h e  x d i r ec t ion .  Combining equat ions (16) ,  
(19), ( 1) and (22) al lows t h e  measured r e s i s t a n c e  t o  be w r i t t e n  a s  

where $:f = e f f e c t i v e  measured p o t e n t i a l  d i f f e r ence  i n  the x d i r e c t i o n  of a con- 
ductor wi th  cu r r en t  flowing, which is  given by 

Wef f 
= W (cos e cos e ) / cos  0 

xm xm Rx I x  wx ( 2 4 )  

= WXm{l  - t an  0 tan(Z(0 - B ~ ) ]  l cos  2 
t X @t 

The measured r e s i s t a n c e  is  then obtained from equations (23) and (24) a s z 3  

2 R = R  { I  - tan B t  tan[2(B - et)]}cos B t  
xm XC X 

(25) 

where the  convent ional ly measured r e s i s t a n c e  i s  given by 

where RX, = convent ional ly measured r e s i s t a n c e  i n  the 1: d i r e c t i o n .  

According t o  equat ions  (22) o r  (25) t he re  a r e  two ways t h a t  t h e  measured 
r e s i s t a n c e  can be zero.23 The f i r s t  way corresponds t o  ordinary BCS supercon- 
d u c t i v i t y  and occurs  when W = 0 o r  equiva len t ly  when:'3 

X "' 

R = O  x c 
(BCS superconduct ivi ty)  (27) 

and the second way occurs  when23 

which is  the  condi t ion  f o r  high-T, superconduct ivi ty  according t o  t h e  coherent 
spacetime theory of high-Tc superconduct ivi ty .  Combining t h e  r e s u l t  i n  equa- 
t i o n  (28) with t h e  condi t ion  of f r e e  e l ec t rons  (weak pa i r ing)  i n  Cooper pairs  

= 2Bt gives the fol lowing condi t ion  f o r  s t r u c t u r a l l y  induced. superconductiv- 



The Heisenberg uncer ta in ty  p r i n c i p l e  can then be invoked t o  deduc,e't:he r e l a t i on -  
sh ip  between t h e  normalized superconduct ivi ty  energy gap f o r  t h e  coherent time 
theory and the corresponding normalized superconduct ivi ty  energy gap f o r  t h e  BCS 
theory as fo l lows23 

where c t  = coherent time and it = incoherent  t i m e .  The r e s u l t  i n  equat ion (30) 
i s  s i m i l a r  t o  va lues  of t h e  normalized superconduct ivi ty  energy gaps t h a t  are 
measured by t h e  var ious  experimental methods mentioned e a r l i e r .  However, t he  
measuredvaluesof  A d t  are ma te r i a l  dependent and can vary  i n  t h e  range of from 
4 through 10, so t h a t  equat ion (30) must be replaced by a substance dependent 
method of c a l c u l a t i n g  A& and t h i s  is one of t h e  c a l c u l a t i o n s  presented i n  t h i s  
paper. Present  day thought suggests  t h a t  t h e  l a r g e  va lues  of A&tsuggests t rong-  
l y  coupled e l e c t r o n s ,  bu t  equat ion (30) and t h e  subsequent a n a l y s i s  i n  t h i s  pa- 
per  shows that t he  large va lues  of t h e  normalized superconduct iv i ty  energy gap 
a r e  due t o  t h e  coherent spacetime f a c t o r  6 / r  and t h a t  high-Tc superconductors 
a r e  i n  f a c t  weakly coupled systems. This paper w i l l  gene ra l i ze  t he  r e s u l t  i n  
equat ion (30) t o  account f o r  t h e  weak e l e c t r o n  p a i r i n g  fo rce .  

D . Thermodynamic Gauge Functions. 

The theory of high-Tc superconduct ivi ty  is  r e l a t e d  t o  a gauge theory of 
t i m e  and energy i n  bulk matter .  This  theory is  based on t h e  following gauge 
and conformal i nva r i an t  renormalizat ion group equat ions  f o r  energy and t ime24 

where E' and E ~ '  = renormalized and unrenormalized average energy d e n s i t i e s  - 
r e spec t ive ly ,  e '  and ta' = renormalized and. unrenormalized time i n t e r v a l s  re -  
spec t ive ly ,  and where the gauge func t ions  Bk and g '  a r e  given by2' p ' P 

where F '  = renormalized pressure  and V' i s  f iven  by equat ion ( I  1). The corre-  
sponding unrenormalized gauge func t ions  a r e  5 y 2 6  

The average energy d e n s i t i e s  t h a t  appear i n  equat ions (31) and (32) a r e d e f i n e d b y  

and t h e r e f o r e  equat ion (31) y i e l d s  the renormalized i n t e r n a l  energy for par- 
t i a l l y  b,roken symmetry space. 



For the s p e c i a l  ca se  of coherent space with BW = n/2 i t  fol lows from equa- 
t i o n  (11) t h a t  V '  = VOV where V = constant  and the  average energy d e n s i t i e s  i n  
equat ion (35) become t h e  coherent space average energy d e n s i t i e s  defined by 

where c s  = coherent space. For t h i s  case  t h e  gauge func t ions  become 

The i n t e r n a l  energy aCs is  then ca l cu la t ed  from a t r a c e  equat ion of t h e  form i n  
equat ion (31) b u t  now using t he  energy d e n s i t i e s  and gaugefunctionsofequations 
(36) and (37) r e spec t ive ly .  

For t o t a l l y  coherent matter with coherent energy and coherent spacetime t h e  
average energy d e n s i t i e s  a r e  defined a s  

where t c  = t o t a l  coherence, while t he  gauge funct ions are w r i t t e n  a s  

The i n t e r n a l  energy utC is  obtained as a so lu t ion  t o  an equat ion analogous t o  
equat ion (31) bu t  with t h e  energy d e n s i t i e s  and gauge func t ions  given by equa- 
t i o n s  (37A) and (38) r e spec t ive ly .  In  t h i s  case BW = n/2 , BUU = a12 and V 
and U a r e  cons tan ts .  

For t h e  special c a s e  of incoherent spacetime with BW = 0 equat ion (11) 
g ives  V' = V where V is  now a v a r i a b l e ,  and the  average energy d e n s i t i e s  i n  
equat ion (35) become 

2 5 , 2 6  
and t h e  gauge func t ions  become t h e  more s tandard expressions 

which are v a l i d  f o r  incoherent spacetime. 

This  paper gene ra l i ze s  the  coherent spacetime theory of high-Tc supercon- 
ductivity by in t roducing  a l a t t i c e  s t r u c t u r e  dependent i n t e r n a l  phase angle  of 
t he  coherent r e l a t i v e  a c c e l e r a t i o n  of t he  e l ec t rons  i n  a Cooper p a i r , a n d t h e r e -  
by develops a structure dependent expression f o r  the  normalized superconductiv- 
i t y  energy gap f o r  high-Tc superconductors. Also considered a r e  thexmodynamic 
processes  that occur i n  t he  partially coherent energy condit ions and p a r t i a l l y  
coherent spacetime s t a t e  t h a t  are assoc ia ted  with the  normal s c a t e  of a high-Tc 



superconductor. Appl ica t ion  is then made t o  t h e  photoemission from t h e  super- 
conducting and normal s t a t e s  of high-T, mater ia l s .  It is  shown t h a t  the lead- 
ing  term of t h e  p h o t o e l e c t r i c  cu r r en t  is  l i n e a r  i n  T f o r  t h e  superconducting 
s t a t e  with T < T, ,whi le  f o r  t h e  normal s t a t e  with T > Tc t h e  leading  term of 
t h e  pho toe l ec t r i c  cu r r en t  is  quadra t i c  i n  T i n  agreement wi th  t h e  quadra t i c  
dependence on temperature t h a t  is  predic ted  by the  conventional Fowler theory 
of t h e  photoemission from ord inary  metals. The paper is  arranged a s  fol lows:  
Sect ion 2 d e a l s  with t h e  coherent spacetime theory of t h e  normalized super- 
conduct ivi ty  energy gap, Sec t ion  3 considers  thermodynamic processes  i n  t h e  
normal s t a t e  of high-Tc materials, and Sect ion 4 develops t h e  theory of photo- 
emission f rom the normal and superconducting s t a t e s  of high-Tc substances.  

2 .  COHERENT SPACETIME THEORY OF HIGH-Tc SUPERCONDUCTIVITY. This s e c t i o n  
p re sen t s  a coherent spacetime theory of the motion of e l e c t r o n s i n a c o o p e r p a i r  
t h a t  can be used t o  determine t h e  e f f e c t s  of t he  electron-phonon i n t e r a c t i o n  
( l a t t i c e  s t r u c t u r e  e f f e c t s )  on t h e  value of t h e  normalized superconduct ivi ty  
energy gap f o r  high-Tc superconductors.  

A. Cooper P a i r s  i n  Coherent Spacetime. 

I n  the  BCS theory,  superconduct ivi ty  i s  assoc ia ted  with a broken gauge sym- 
metry t h a t  is  r e l a t e d  t o  t h e  phonon-mediated formation -of Cooper e l e c t r o n  p a i r s .  
l-" me a n a l y s i s  presented i n  t h i s  s ec t ion  does not  depend on a p a r t i c u l a r  type  
of mechanism t h a t  mediates t h e  e l e c t r o n  pa i r ing .  The only requirement f o r  t h e  
ca l cu la t ions  i n  t h i s  s e c t i o n  is t h a t  t h e  e l ec t rons  i n  the Cooper p a i r s  a r e  i n  a 
coherent spacetime s t a t e .  The e l e c t r o n s  wi th in  a Cooper p a i r  experience an a t -  
t r a c t i v e  i n t e r a c t i o n  due t o  t he  electron-phonon coupling. The e l e c t r o n  p a i r s  
themselves can i n t e r a c t  wi th  each o the r  wi th  an  in t e r -pa i r  f o r c e  FpX i n  t h e  x 
d i r ec t ion .  Then t h e  equat ion  of motion of an  e l e c t r o n  p a i r  is 

where x = x , y , z  ,me = e l e c t r o n  mass, and where t h e  s u b s c r i p t s  1 and 2 des igna te  
each of t he  two e l e c t r o n s  of t h e  p a i r .  Note t h a t  t h e  in t e r - e l ec t ron  fo rce  can- 
c e l s  - out  of equat ion (41).  For t h e  simple case  of zero in t e r -pa i r  fo rces ,  
FpX = 0 and equat ion (41) becomes for a free p a i r  of i n t e r a c t i n g  e l ec t rons  (or 
holes )  

Note t h a t  both t h e  space and time coordinates  a r e  l o c a l  t o  each e l ec t ron .  

Consider now t h e  case  of coherent  spacetime i n  which the  space and time co- 
o rd ina t e s  have t h e  following d i f f e r e n t i a l s 2 '  

so  t h a t  the  e l e c t r o n  speeds i n  coherent spacetime are given a s 2 5  



where x x2, t and t a r e  a l l  cons tan ts .  Then a simple ca l cu la t ion  shows 
1 '  1 2 

that t h e  coherent spacetime acce l e ra t ion  of t h e  p a r t i c l e s  i s  given by 

where x 1 , x 2 , t  and t a r e  cons tan ts  and where 
1 2 

C - de /d8tl(d9xl/det, - 1 )  x 1 x 1 x2 x 2 x 2  
C = de /dOt2(d6 /det, - 1) (46) 

Then combining equat ions (4 1) through (47) g ives  

where - x = x , y ,  z . If the  e l ec t ron  p a i r s  are themselves nonin terac t ing  then 
F = 0 i n  equat ion (48). 

PX 

Note t h a t  # t2 (or r l  - #  t 2  and B t l  # Bt2) because the  two e l ec t rons  of 
the  p a i r  are s i t u a t e d  i n  d i f f e r e n t  l o c a t i o n s  wi th in  t h e  s o l i d  l a t t i c e  and a r e  
t he re fo re  l oca t ed  i n  regions of d i f f e r e n t  energy dens i ty  and pressure  of the 
l a t t i c e  so t h a t  by t h e  fundamental t i m e  equat ion (32) i t  fol lows t h a t  # f 2  . 
In genera l  f l  f t2 because t h e  c r y s t a l  l a t t i c e  is  a n i s o t r o p i c  and inhomogeneous 
a t  t h e  atomic sca l e .  According t o  t h e  gauge theory of t i m e  a s  represented by 
equat ion (32) t i m e  i s  a func t ion  of l o c a l  energy d e n s i t  and pressure which 
v a r i e s  throughout the  s o l i d , l a t t i c e  on an atomic s c a l e .  7 4  

For t h e  case  of i n t e r a c t i n g  p a i r s  of i n t e r a c t i n g  e l e c t r o n s  equation (48) 
can be w r i t t e n  as 

where x = x , y  , z and where 

t a n  8 = D /C 
ax1 X L  XI (52) 

tan 0 = D /C 
ax2 x2 x2 

(53) 



The standard way of so lv ing  equat ion ( 4 9 )  i s  t o  take  t h e  r e a l  and imaginary p a r t s  
of equat ion (49) and relate t he  f o r c e  and acce l e ra t ion  terms. But t h i s  l e a d s  t o  
complicated expressions which are d i f f i c u l t  t o  use. A simpler way i s  t o  u s e t h e  
approximation that t h e  i n t e r n a l  phase angles  of each of t h e  t h r e e  component 
terms of equat ion ( 4 9 )  are equal .  This  g ives  t he  following approximate s o l u t i o n  

Define t h e  fol lowing phase ang le  d i f f e r ences  

then equat ion (55) can be w r i t t e n  a s  

For the case  when t h e  in t e r -pa i r  i n t e r a c t i o n  f o r c e  i s  zero the fol lowing exac t  
equat ions a r e  v a l i d  

.l 'I 

Note t h a t  if BX1 i s  in t h e  first quadrant then BX2 is i n  t h e  t h i r d  quadrant.  
The phase angle  BaX , d e f i n e d  by equat ion (58), is  t h e  r e l a t i v e  phase angle  be- 
tween t h e  a c c e l e r a t i o n s  of t h e  two e l e c t r o n s  i n  a Cooper p a i r ,  and can be a 
p o s i t i v e  o r  nega t ive  number. Equations (43A)  through (59A) descr ibe  t h e  mo- 
t i o n  of coherent spacetime e l e c t r o n s i n a C o o p e r p a i r o f  ahigh-Tc superconductor.  

B. Normalized Superconduct ivi ty  Energy Gap. 

Combining the coherent spacetime superconduct ivi ty  condit ion given inequa-  
t i o n  (28) wi th  t h e  coherent  s p a c e t h e  condi t ion  f o r  Cooper e l ec t ron  pair accel- 
e r a t i o n  given i n  equat ion ( 5 9 )  y i e l d s  



where x = x , y , z . These equat ions reduce t o  t h e  previously obtained va lues  of 
B t  and €IX given i n  equat ion (29) i f  t h e  r e l a t i v e  i n t e r n a l  phase angle of the  
e l e c t r o n  acce l e ra t ions  given i n  equat ion (58) is  set equal  t o  zero a s  BaX = 0 . 
For OaX = 0 equat ions (61) and ( 6 2 )  reduce t o  t h e  r e s u l t s  obtained i n  Reference 
23. For an i s o t r o p i c  system BaX = 0, f o r  x = x ,  y , z . The f a c t  t h a t  
0 # B # 0 is an i nd i ca t ion  t h a t  each e l e c t r o n  of a Cooper p a i r  is  loca t ed  
i n  a d i f  e r e n t  region of l o c a l  energy dens i ty  and pressure  of t he  c r y s t a l  l a t -  
t ice. The depar ture  of t he  va lues  of t h e  i n t e r n a l  phase angles  of time and 
space from the  values given i n  equat ion ( 2 9 )  is  a measure of t h e  degree of an i -  
sotropy of t h e  electron-phonon i n t e r a c t i o n  due t o  t h e  anisotropy of t he  atomic 
s t r u c t u r e  of a high-T, ma te r i a l .  

The coherent time and incoherent t i m e  normalized superconduct ivi ty  energy 
gaps are giGen by 2 3 , 2 4  

where A;, = incoherent t i m e  normalized (BCS) superconduct ivi ty  energy gapgiven 
by equat ion ( 2 ) ,  A,& = coherent t i m e  normalized superconduct ivi ty  energy gap 
i n  t he  y, d i r e c t i o n  = measured normalized superconduct iv i ty  energy gap i n  the  x 
d i r e c t i o n ,  and where r = Bohr t i m e  o r  t h e  c h a r a c t e r i s t i c  t i m e  of an  e l e c t r o n  i n  
a Bohr o r b i t  about t h e  o ther  e l ec t ron  i n  a Cooper p a i r .  Combining equat ions (61) 
and (63) g ives  

The va lue  of t h e  coherent time normalized superconduct ivi ty  energy gap 2s then 
obtained from equarions (2) and ( 6 4 )  t o  be 

where the  approximation i n  equation (65) holds  only  for small values of BaX . 
The Bohr t i m e  T does not  e n t e r  t he  expression f o r  the normalized superconduc- 
t i v i t y  energy gap given by equat ion (65). 

The value of Bax can be obtained from equat ions  (64) and (65) r o b e  
' 

Equation ( 6 6 )  can be used t o  determine 0, from t h e  measured v a l u e s o f t h e n o r -  
malized s ~ p e r ~ o n d v c t i v i t y  energy gap i n  t i e  x d i r e c t i o n  A Z t x  . h e  range of the  
measured values  of hitX goes f rom2through10 dependingonmarerialtype. 1111,14; 

' 9 -22  Values of 0 f o r  s e l ec t ed  va lues  of LAty a r e  evaluated from equat ion 
ax 



(66) as fol lows 

0 rad  
ax ' 

The va lues  of 0, can be p o s i t i v e  o r  negat ive.  The f a c t o r  6 / r  t h a t  occurs  i n  
equat ions  (64) tgrough ( 6 6 )  is  respons ib le  f o r  t he  large measured values of 
AAtX r e l a t i v e  t o  t h e  BCS normalized superconduct ivi ty  energy gap v a l u e o f 3 . 5 2 .  
Therefore t h e  l a r g e  va lues  of A l t X  a r e  due t o  t h e  coherent time s t a t e  a s soc i a t ed  
with high-Tc superconduct ivi ty ,  and a r e  no t  a s soc i a t ed  with s t rong  couplings of 
t h e  e l e c t r o n s  i n  a Cooper p a i r .  Also a measured va lue  of AAtX % 3.52 f o r  a 
high-Tc superconductor does not  imply a BCS superconduct ivi ty  mechanism but  only 
t h a t  t he  r e l a t i v e  phase angle  of t h e  e l e c t r o n  a c c e l e r a t i o n  i n  t h e  Cooper p a i r  
has  a va lue  0, % - 0 . 7 1 .  The small  va lues  of BaX t h a t  occur f o r  r e l a t i v e l y  
l a r g e  va lues  o$ d l tX  suggest t h a t  t he  e lec t ron-e lec t ron  pa i r ing  i n t e r a c t i o n  is  
weak. The f a c t  t h a t  t h e  e lec t ron-e lec t ron  coupling i n  Cooper p a i r s  is  weak is  
u t i l i z e d  i n  Sect ion 4 where t h e  theory of the p h o t o e l e c t r i c  e f f e c t  i n  high-Tc 
superconductors i s  considered. 

3 .  THERMODYNAMIC PROCESSES I N  THE NORMAL STATE OF HIGH-Tc SUPERCONDUCTORS. 
This  s e c t i o n  cons iders  t he  poss ib l e  thermodynamic processes  and spacerime s t a t e s  
f o r  t h e  normal s t a r e  (T > Tc) of a high-Tc superconductor.  The normal s t a t e s  of 
organic ,  heavy fermion, and copper oxide high-Tc superconductors have pecu l i a r  
experimental p r o p e r t i e s  and may no t  be desc r ibab le  as an  ord inary  Fermi gas 
ground s ta te  because of t h e  presence of ant i ferromagnet ism and the  extreme l a c k  
of i so t ropy  of t he  e l e c t r i c a l  p r o p e r t i e s  such a s  r e s i s t i v i t y ,  magnetic penetra- 
t i o n  depth and c o r r e l a t i o n  l eng th .  1-11,13-15 For ins tdnce ,  p a r a l l e l  t o  t h e  CuO 
planes  t h e  conduct iv i ty  is  m e t a l l i c  while  i n  t h e  perpendicular  d i r e c t i o n  i t  is  
l i k e  a semiconductor. 1-1 1 . Thus t h e  normal s t a t e  of a high-Tc superconductor 
needs a s c i e n t i f i c  i n v e s t i g a t i o n  along with t h e  superconducttng state. This  
s e c t i o n  cons iders  t h e  genera l  case of p a r t i a l l y  coherent thermodynamic s t a t e s  
a s soc i a t ed  with p a r t i a l l y  coherent spacetime s t a t e s .  This descr ibes  thermodyn- 
amic processes  occurr ing i n  the  normal state of a high-Tc superconductor because 
t h e  normal s t a t e  with T > Tc is  assumed t o  be i n  a p a r t i a l l y  coherent spacetime 
s t a t e .  The superconducting s t a t e  with T < Tc is  a s soc i a t ed  wLth complete space- 
time coherence and is  a s p e c i a l  case  of t h e  c a l c u l a t i o n s  done i n  this sec t ion .  
The BCS s t a t e  is taken t o  be an incoherent  spacetime s t a t e .  

A .  Energy Density and Entropy Density,. 

This  subsec t ion  c a l c u l a t e s  t h e  energy d e n s i t i e s  and entropy d e n s i t i e s  of 
a p a r t i a l l y  coherent thermodynamic s t a t e  of t h e  normal, p a r t i a l l y  coherent 
spacetime, s t a t e  of a high-T, superconductor.  The combined first and second 



laws of thermodynamics are written for this case as2 

T ~ S  = dU + FdT + {di 

= d c  + F(dVI + Eldzl 

where 

j e u  - s = s e j e ~  f = ~e P' = ~e j ( 6 8 )  

j e h  z = Me fi = M e j e ~  F = ~e j e~ (69) 

0; = ep  - Bv - BW ( 7 0 )  

0; = OM - B a  - Baa (71) 

where BW is defined in equation (12) and Baa is given by 

tan B = a a e a / a a  
aa ( 7 2 )  

The differential entropy density for broken symmetry thermodynamics and 
broken symmetry spacetime is written as 

The broken symmetry differential entropy density can be written as 
- - 
s I s  .jQsv 
bs bs 'bs 

= (d3l/(dVl ( 7 4 )  

where 

s = sec BSS cos BW s 
b s inc 

= csc BSS sin BW stc 

= sec BSS sin BVV scs 

= csc BSS cos B W 'cth 

where the following entropy densities are defined 

= dS/dV 'inc . 
= s t c / v  aes /aev  - stc evaes/aev t c  

s = i / v  ascs/ae, = a / a e , ( e g c s )  
CS 

s 
cth = Seth aes / av  
5 = slv g 1  = s l / v l  



where sin, = incoherent d i f f e r e n t i a l  entropy dens i ty ,  s t c  = t o t a l  coherence d i f -  
f e r e n t i a l  entropy dens i ty ,  scs = coherent space d i f f e r e n t i a l  entropy dens i ty ,  
sc th  = coherent thermodynamics d i f f e r e n t i a l  entropy dens i ty ,  S = incoherent av- 
erage entropy dens i ty ,  9 '  = average energy dens i ty ,  5,, = coherent spacetime av- 
erage entropy dens i ty ,  and Stc = t o t a l  coherence average entropy dens i ty ,  and 
where 

I n  equat ion (81) VOV is  given by equat ion (11) wi th  Bm = a12 , and i n  equat ion ( $ 3 )  

t an  B = saOs/as SS (84 )  

Sometimes i t  is convenient t o  work with an  entropy dens i ty  that does not  inc lude  
the i n t e r n a l  phase angle  of t h e  volume so t h a t  i n s t ead  of equation (7.3) t he  f o l -  
lowing entropy dens i ty  i s  introduced 

The superconducting s t a t e  (T < Tc) has BW = "12 i n  equat ions (75B) and (75C). 

The broken symmetry energy dens i ty  f o r  p a r t i a l l y  coherent i n t e r n a l  energy 
and p a r t i a l l y  coherent spacetime is  

where the  energy dens i ty  magnitude i s  w r i t t e n  as 

ebs  
= laCl / ldTl  (87) 

and can have the  fol lowing r ep resen ta t ions  

e = sec BUU cos Bm einc b s 
(88A) 

= c s c  BUU s i n  BW etc  (88B) 

= s e c  fiUU s i n  B~ ecs ( 8 8 0  

= csc BUU cos BVV ecth (88D) 

where the  following energy d e n s i t i e s  are defined 



e 
c t h  = 'cth 

aeu/av 

E = U/V E' = U'/Vf 

where einc = incoherent d i f f e r e n t i a l  energy dens i ty ,  e tc  = t o t a l  coherent d i f -  
f e r e n t i a l  energy dens i ty ,  eCs = coherent space d i f f e r e n t i a l  energy dens i ty ,  
ecth = coherent thermodynamic d i f f e r e n t i a l  energy dens i ty ,  E = incoherent av- 
erage  energy dens i ty ,  E' = average energy dens i ty ,  Ecs = coherent  spacetime av- 
e rage  energy dens i ty ,  Etc = t o t a l  coherence average energy dens i ty ,  and where 

@* = 0 + BUU - O V  - BVV = QU - aV u 
QU = B U  f BUU 

tan BUU = Uaeu/aU 

A n  energy dens i ty  can be defined t h a t  excludes t h e  i n t e r n a l  phase angle  of 
space a s  fol lows 

The values  of U,U' , Utc ,Uc, and Ucth a r e  evaluated from t h e i r  corresponding 
renormalizat ion group t r a c e  equat ions of t h e  g e n e r a l  form given i n  equat ion (31).  
The superconducting s t a t e  (T < T,) has BW = 7r/2 i n  equat ions (88B) and (88C). 

The general ized coord ina te  dens i ty  can be  w r i t t e n  as 

= 
a = &/dV = eJ (Oa-e~) (da + jadea) / (dV + jVdBV) 

b s  

which can also be represented as 

= 

abs = %s 
j %V 

where 

a = sec Baa cos BW a bs inc 

= csc  Baa s i n  BW a t=  

where t h e  following generaf ized coordinate  d e n s i t i e s  are defined 

a 
i n c  = da/dV 



where ainc = incoherent  d i f f e r e n t i a l  genera l ized  coord ina te  dens i ty ,  a t ,  = to- 
t a l l y  coherent d i f f e r e n t i a l  general ized coord ina te  density, A = incoherent  av- 
e rage  general ized coordinate  dens i ty ,  A' = average genera l ized  coordinate  den- 
s i t y ,  At, = t o t a l  coherence average genera l ized  coord ina te  dens i ty ,  and where 

An a l t e r n a t i v e  d e f i n i t i o n  of t h e  genera l ized  coord ina te  dens i ty  t h a t  does no t  
conta in  the  i n t e r n a l  phase angle  of the volume i s  given by 

N o t e ' t h a t  i t  is  assumed t h a t  and E behave i n  a homologous way so that: i f  7 is  
incoherent then so  is , and when i s  coherent then so is  . This is why only 
two r ep re sen ta t ions  of abs appear i n  equat ion  (101). The superconducting s t a t e  
(T < Tc) would have BW = a12 and B,, = rr/2 i n  equat ion  (101B), while t he  BCS 
s t a t e  would have BW = 0 and Baa = 0 i n  equat ion  (101A) .  

B. Pressure f o r  Partial ly Coherent Thermodynamics and P a r t i a l l y  Coherent 
Spacetime. 

This subsec t ion  determines t h e  pressure  of a p a r t i a l l y  coherent thermodyn- 
amic system i n  the normal s t a t e  of a high-Tc superconductor.  The pressure i s  
obtained from equation (67)  as 

so that 

The pressure can be obtained from equat ion (110) t o  be 

which can be r ewr i t t en  using equat ions (75) through (78) and (88) through (92) 
as follows 

p = cos Bw Usinc set BSS e jms - e set BUU ejmu - Mainc s ec  Baa inc 
efe,) (113) 

= sin BW (Tstc csc  8 e j m s  - e csc  8, ss t c  
e j eu  - Ma ese pa, e t c  

jen) (114) 

e j Q ~  , J e ~ )  (115) ' = s i n  $V ( T S ~ ~  sec BSS e j m s  - e sec fiUU 
C S  & t c  C S C  Baa 

. @  
= cos B~ ( ~ s ~ ~ ~  csc BSS d s - e csc B~~ e j @ u  - 

cth &in= 
sec  Baa eleM) (116) 



From e q u a t i o n s  (68) and (69) it follows t h a t  

dP = sec Bpp dP ejPp = c s c  6 Pdep ej'p 
PP 

d~ = sec B~~ dp ej ('P-@v' = csc fipp pdep e j (QP-Qv) 
(118) 

where 

tan Bpp = Paep/aP 

@P = OP + f 3 ~ ~  

Equat ions  (113) through (116) g i v e  f o u r  fundamental r e p r e s e n t a t i o n s o f  t h e p r e s -  
s u r e  i n  t h e  normal state of a high-Tc superconductor .  

From e q u a t i o n  (67) it f o l l o w s  t h a t  

T ~ S I ~ T  = a i i / a ~  + G a ; / a ~  

~ a i / a v  = ao/af + P= + Raa'/ai? 

aZ /aG  = a / a ~ ( F  + f i a i / a V )  

Equ iva len t ly ,  e q u a t i o n s  (122) through (124) can be wri t : ren  as 

Equations (124) and (127) can be w r i t t e n  r e s p e c t i v e l y  as 

- 
where Gabs = Zbs , and where zbs , eb, , ebs , abs , ab, and abs a r e  given by equa- 
t i o n s  (861 ,  (98) ,  (88), ( l o o ) ,  (108) and (101) respectively. I f  t h e  generalized 
c o o r d i n a t e  i s  independent of the volume then abs.= 0 and 

For the t o t a l l y  coherent  case with BUU = 1 ~ 1 2  and BW =: a /2  it f o l l o w s  from equa- 
t i o n s  (127C), ( 8 6 ) ,  (88B), (90) and (95) thar  



From equation (121) it follows approximately after neglecting dz 

sec fiSS ~ a s / a ~  % sec BUU aU/a~ (128) 

Equation (130) gives 0s ". BU for incoherent thermodynamics when BSS = 0 and 
f 3 ~ ~  = 0 ,and for coherent thermodynamics when Bss =  IT/^ and Buu = "12  . Equa- 
tion (126) can be written approximately, after neglecting d 6 , a s  follows 

s J'S % ap/a~ SEC fipp e j @p 
bs (131) 

= Pae /aT csc flpp e j @P 
P 

where equation (85) was used to evaluate the left hand side of equation (126). 
Equation (131) can be rewritten as 

s Q sec B~~ a P / a ~  = csc B~~ paep/aT 
bs (132) 

where sbs is given by any of t he  expressions in equation (75), QS is given by 
equation (83),  @U is given by equation (96), and @p by equation (120). 

Equation (67) or equation (112) gives 

Tsbs cos QS = e cos 9 f P cos B p  f Mabs cos e bs U M 

Tsbs sin QS = e,s s i n  @ + P sin B p  f Mabs sin 0 
U M 

which gives the pressure as 

tan 0 = A/B 
P 

A = Tsbs sin @ - e sin @ - Mabs sin OM S b s  U (138) 

Assuming OM 'L as Q @U in equation (136) gives the magnitude of t h e  pressure 
approximately as 



where sbs i s  any form i n  equat ion (75),  ebs i s  any corresponding expression i n  
equat ion ( 8 8 ) ,  and abs is t h e  corresponding value obtained from equat ion (101). 
The var ious  expressions f o r  P given i n  equat ion (140) can be read d i r e c t l y f r o m  
equat ions (113) through (116) by assuming Bp % BM % @ 

U *  

From equat ion (67) o r  more d i r e c t l y  from equat ions (113) through (116) i t  
fol lows t h a t  t h e  following equiva len t  p a i r s  of equat ions a r e  v a l i d  

Tsinc sec  BSS cos QS = e s e c  Bm cos @ i n c  U (141) 

+ P s e c  BW cos 0 + Mainc sec B,, cos OM 

Tsinc sec  BSS s i n  @ = einc s e c  BUU s i n  @ 
S U 

+ P sec BW sin 8 + Mainc sec Baa s in  BM P 

csc Bss. cos @ = e csc  BUU cos @ 
S t c  U 

+ P c s c  BW cos B p  + M a  csc B cos 9 
t c  acl M 

Tsrc csc  BSS s i n  @ = e csc BUU sin @ 
S t c  U 

+ P c s c  Bm s i n  Bp + Matc csc 6 s i n  9 
aa M 

Ts sec BSS cos @ = ecs S 
sec  BUU cos 9 

C S  U 
( 1 4 5 )  

+ P c sc  BW cos 0 + Marc c sc  Baa cos BM 

Tscs 
sec  B s i n  @ = e s e c  BUU s i n  @ ss S cs U 

(146) 

C P csc s i n  6 + Matc csc f3 s i n  0 P aa M 

%th  csc BSS cos QS = e csc BUU cos Q c t h  U 

C P sec  eW cos B p  + Mainc s e c  Baa cos 9 M 

Tscth csc BSS sin = ecth c s c  Bm sin aU 

+ P sec BVV s i n  0 + Mainc sec B,, s in  0 M 

 or the development of equat ions (141) through (148) i t  has been assumed that 



t he  variables and 5 behave similarly i n  t h e  sense t h a t  i f  one i s  coherent 
so is the other, and i f  one i s  incoherent  then  so i s  t h e  o the r .  

From equat ions (141) and (142) i t  f o l l o w s  t h a t  

2 2 2 2 2 2 2 2 2 2 P sec BW = T s s e c  BSS + einc sec  BUU + M ainc sec  Baa i n c  (149) 

- 
2Tsinceinc sec  BSS sec Bmr cos(Qs - Qu) 

- 2TMsincainc sec  BSS sec B,, cos(gg - OM) 
+ 2Meincainc sec BUU sec Baa cos(QU - OM) 

and 

t a n  0 = C/D 
P (1.50) 

C = Tsinc sec BSS s i n  @ - e sec BUU s i n  OU - 
S 

Mainc sec Baa sin BM 
inc (151) 

D = Tsinc sec  BSS cos @ - e s e c  6 cos QU - Ma sec flaa cos 0 
S inc UU i n c  M (152) 

Combining equat ions (143) and (144) g ives  

2 2 2 2 2 2 2 2 .2 2 p ~ S C  fiW = T s csc BSS + e csc  BUU + M a: c s c  Baa 
t c  t c  t c  

- 2Tstcetc c sc  BSS c sc  BUIl cos(OS - QU) 
- 2TMsrcatc csc flSS csc Baa cos(QS - OM) 
+ 2Metcatc csc BIRT csc B,, cos(mU - BM) 

and 

tan R p  = E/F (154) 

E = Tstc csc BSS s i n  as - e csc Bw sin - Marc csc 6, s i n  0 
tc M (155) 

F = T~~~ CSC B~~ Q - e csc B~ COS Q - mtc C S C  B,, ~ O S  eM s t C  U 
(156) 

From equat ions (145) and (146) it fol lows that 

2 2 2 2 2 2 2 2 P c sc  BVv = T s ~ e c  BSS + ecs Set BUU c s c  Baa 
C S + 

- 2Ts e s e c  BSS sec BUU cos(Qs - aU) 
C S  CS 

- 2TMsCsatc s e c  BSS csc  B,, cos(Qs - OM) 

+ 2Mecsatc s ec  BUU csc Baa cos(QU - OM) 

and 



tan 0 = G/H P (158) 

G = Ts sec ,6 sin @ - e sec BW sin @ - Matc csc Baa sin 8 
cs S S S cs U M (159) 

H a TsCS sec BSs cos - e sec BUU cos @ - Matc csc Baa cos BM s cs u (160) 

Finally, combining equations (147) and (148) gives 

2 2 2 2 2 2 2 2 2 
P sec 6 = T scrh csc B~~ + e2 csc B W crh 

+ M ainc sec Baa (161) 

- 2Tscthecth CSC.  ESS CSC. BUU. cos ( @  s - @u) 

- 2TMscthainc csc B sec Baa COS(@~ - eM) 
S S 

+ 2Mecthainc csc BUU sec Baa cos(aU - BM) 
and 

tan 0 = I/J P (162) 

I = Ts csc BSS sin O - e csc Bm sin - Mai,c cth S cth U M (163) 
sec Baa sin 0 

J = Ts csc BSS cos - e csc BUU cos QU - Mainc sec Baa cos 
cth S cth (164) 

Equation (130) shows that % QU and this simplifies the application of 
equations (141) through (164). An approximate solution for equations (141) 
through (148) can be found by taking 

Combining equations (133) and (165) gives Bpp 0 which must hold if B p  is 
essentially constant. The constant phase angle conditions in equation (165) 
simplify equations (149) ,  (153), (157) and (161) so that: the magnitude of the 
pressure is given approximately by any of the following equations 

P Q cos fiVV ( ~ s ~ ~ ~  S ~ C  BSS - e sec B - Ma set Baa) 
inc UU inc (166)  

2, sin BW (Tstc csc BSS - etc csc BUU - Matc csc Baa) (167)  

% sin BW ( T S ~ ~  sec BSS - e sec BUU - Ma csc Baa) 
CS t c 

(168) 

'L COQ B~~ ( ~ s ~ ~ ~  csc BSS - e csc BUU - mint Baa) cth (169) 

which can also be determined from equation (113) through (116) by using the 
approximate conditions In equation (165). 

From equations (130) and (133) it follows that 

- 1 
BS + tan (sa8,IaS) 1. k 

e u + tan-'(uae,/au) . k 



o r  f o r  small angles  

The s o l u t i o n s  t o  equat ions (173) through (175) a r e  given by 

where k , C p ,  CS and CU = cons tan ts .  This suggests t h a t  the i n t e r n a l  phase 
angles  of the thermodynamic func t ions  tend t o  vary inve r se ly  with magnitudes of 
t he  thermodynamic func t ions .  

4. PHOTOJXECTRIC EFFECT I N  HIGH-T, SUPERCONDUCTORS. The standard ca lcu la-  
t i o n  of t h e  pho toe l ec t r i c  cu r r en t  i n  terms of t h e  temperature of the metal 
which i s  i r r a d i a t e d  by photons was given by Fowler who performed a s t a t i s t i c a l  
mechanical treatment of t he  gas of f r e e  e l ec t rons  t h a t  is  assumed t o  be respon- 
s i b l e  for t he  e l e c t r i c a l  p r o p e r t i e s  of metals.  27 This c a l c u l a t i o n  i s  wel l  known 
and proceeds by ca l cu la t ing  the  p a r t i t i o n  func t ion  f o r  a Fermi gas a t  f i n i t e  
temperature and l e a d s  t o  t h e  fol lowing r e s u l t  f o r  t h e  pho toe l ec t r i c  cu r r en t27  

where p = e l e c t r o n  momentum, p = chemical p o t e n t i a l ,  m, = e l e c t r o n  mass, k = 
Boltzmann cons tan t ,  T = absolute temperature,  A = cons tan t  independent of f r e -  
quency and temperature,  and a = cons tan t  given by2' 

2 3 a = 4amek /h (178) 

where h = Planck 's  cons tan t .  The lower l i m i t  on t h e  i n t e g r a l  comes from t h e  
E ins t e in  law of t h e  pho toe l ec t r i c  e f f e c t 2 '  

2 
pM/(2m,) = h(v - v ) = hv - W 

0 
(179) 

where pM = maximum momentum of t h e  emit ted photoe lec t rons ,  v = frequency of the 
inc ident  l i g h t ,  v, = th reshold  frequency, and W = work funct ion.  

Changing the  v a r i a b l e  of i n t e g r a t i o n  i n  the following manner 

al lows t h e  i n t e g r a l  i n  equat ion (177) t o  be w r i t t e n  a s2 '  

2 I  = AaT D ( 6 )  I / T ~  = AaD(6) 

where 



where 

and 6 can be p o s i t i v e  o r  nega t ive .  For 6 < 0 t h e  func t ion  D(6) i n  equat ion 
(182) is  obtained by expanding t h e  logari thm i n  a power s e r i e s  w i ~ h  t h e  r e s u l t 2 ?  

For 6 3 0 t he  i n t e g r a l  i n  equat ion (182) is  r ewr i t t en  a s  

In  t h i s  form t h e  logari thms can be expanded i n  power s e r i e s  because the  argu- 
ments of t h e  exponent ials  a r e  always negat ive  numbers, and i t  i s  simple t o  show 
t h a t  ' 

2 2 -6 -26 2 -36 2 -46 2 
D = ~ / 6 + 6  1 2 -  (e - e  /2 f e  1 3  - e  / 4  + - m e )  (186) 

The leading temperature term f o r  t he  photoemission cu r ren t  i s  T~ as shown i n  
equat ion (181), and t h e r e  is  good agreement between equat ion (181) and ex e r i -  
mental r e s u l t s  onmany k inds  of ordinary  meta ls  and var ious  temperatures.  ! 7 

This sec t ion  gene ra l i ze s  the Fowler theory of photoemission t o  t h e  case  of 
high-Tc superconductors which a r e  t r e a t e d  as mate r i a l s  having complete space- 
time coherence f o r  t he  superconducting s t a t e  (T < Tc), and p a r t i a l  spacetimeco- 
herence f o r  t h e  normal s t a t e  (T > Tc). This  is  done by f i r s t  observing t h a t b e -  
cause t h e  e l ec t ron  p a i r i n g  f o r c e  i s  weak (Sect ion 2)  t h e  assumption of f r e e  
' e lec t rons  can be made and the  complete o r  p a r t i a l  spacerime coherence can be 
introduced i n t o  the  phoroemission theory by i n t e g r a t i n g  over a complex number 
s i n g l e  p a r t i c l e  momentum i n  equacion (177) a s  fol lows 

where - - 
-q t6 5 = 1 ln(l e e )dii 

3 = 6eje~ = h(: - u )/(k~) = constant  
0 



where the internal phase angles of the frequency are assumed to be2' 

B $ . =  e0 - = - 0 - - OtR OtR = constant v (191) 

0 where BtR and BtR refer to the incident electromagnetic waves that eject elec- 
trons from the surface of a high-T, superconductor, so that equation (189) can 
be written as 

where 6 and 66 are constants. The constant internal phase angle 8 6  = - BtR is 
associated with the incident electromagnetic wave interacting with matter. The 
integration variable t can be written as 

The superconducting and normal states of high-T, superconductors will now be 
considered. For the superconducting state Ot = ~ / 6  , 0, = rr/3 , and 8q = ~ / 3  
for the electrons.23 The complex number Einstein law of phoroemission can be 
written as2' 

2 0 
p,/(Zm,) P h ( v  - vo) 20  = 0 = 0 v = B g  = constant (1 94B) 

PM 

where = complex number maximum momentum of ejected electron. M 

A. Coherent Spacetime Superconducting State. 

According to the theory presented in this paper the superconducting state 
of a high-Tc compound has complete spacetime coherence and therefore it EolLows 
from equations (193) and (194) that the variation of 6 is given by a pure rota- 
tion in internal space as follows 

dYj = jGd8 = jp2d0p/ (mek~) 
rl 

(195) 

with the magnitudes q and p taken as constants n = rtc and p = p, and where 

rl = rlc = P:/(2mek~) = constant (196) 

where the constant momentum magnitude is associated with the constant transi- 
tion temperature Tc by 

2 
P,/ 12m,) = kTc 

so that from equations (196) and (197) 



Note a l s o  t h a t  dBn = 2dBp , The i n t e g r a l  i n  equat ion (188) c a n t h e n b e w r i t t e n  a s  
" 1 3  

where the  upper l i m i t  comes from equat ion (194) and the f a c t  t h a t  f o r  t h e  super- 
conducting state of a high-Tc ma te r i a l  

For an e l e c t r o n  i n  a coherent spacetime s t a t e  of t h e  superconducting s t a c e  of a 
high-Tc compound t h e  kinematic i n t e r n a l  phase angles  a r e  given byZ3 

while from equat ions (191), (192) and (194B) it fol lows t h a t  a photon e j e c t i n g  
an e l e c t r o n  from t h e  su r f ace  of a high-Tc ma te r i a l  i n  i t s  superconduct ings ta te  
has  the following i n t e r n a l  phase angles  

Nore t h a t  f o r  photons i t  i s  always t r u e  t h a t  B t R  = O r R .  For t h e  superconducting 
s t a t e  of a high-T, superconductor i t  fol lows from equat ion (194A) that the in- 
t e r n a l  phase angle of t h e  work func t ion  is  given by 

The spacetime coordinate  phase angles  f o r  e l ec t rons  i,n the  superconducting 
s t a t e  of a high-Tc compound a r e  B t  = ~ r / 6  and 0, = 1 ~ 1 3 ,  while  f o r  blackbody ra-  
d i a t i o n  photons i n  t h e  superconducting s t a t e  of a high-Tc compound t h e  phase 
angles  a r e  0, = 1t/6 with B t ~  = O r ~  = - ~ / 6 ,  a r e s u l t  which fo l lows  from t h e  
momentum conservat ion Law f o r  photon-electron c o l l i s i o n s  hC/c = m v  which g ives  
immediately 0, =  IT/^ - n/6  = ~ / 6  . 2 8  On t h e  o the r  hand, t h e  i n t e r n a l  phase 
angles  of t h e  photons t h a t  a r e  e j e c t i n g  e l ec t rons  from t h e  su r f ace  of a high-Tc 
ma te r i a l  i n  i t s  superconducting s t a t e  a r e  given by equat ion (200B) a s  By = m/3 
with etR = 6 , ~  = - 1t/3 and a r e  seen t o  have twice t h e  values a s soc i a t ed  with 
blackbody r a d i a t i o n  photons. 

Expanding t h e  logari thm i n  equat ion (199) g ives  t he  following r e s u l t  
C9 

where 



Simple algebra shows t h a t  

where 

f 
= pu[S cos(o6 s i n  Bg)  - C s in (a6  s i n  0,) J J A ~  u o 

+ 
= pa r so  cos(06f i /2)  - Ca s i n ( u 6 6 / 2 ) ]  

+ 
JAI = % [ S o  sin(u6 s i n  B6)  + Co cas(o6 s i n  Bg)] 

= e;[sa s i n ( 0 6 6 / 2 )  + Co cos(o6JS/2)] 

where 

' I 3  -on, cos 0, s in(onc s i n  0 rl - Bq)dO,, 

-onc C O S  eq c U =  l e  cos(on s i n  9 - en)den 
0 c n 

where the  va lue  06 = 1 ~ 1 3  was used f o r  a photon undergoing an i n e l a s t i c  s c a t t e r -  
ing with a coherent spacetime e l e c t r o n  and e j e c t i n g  i t  from the su r f ace  of a 
high-Tc compound i n  i ts  superconducting s t a t e  a s  descr ibed by the  complex num- 
ber  forms of t he  E ins t e in  equat ions (194A) and (194B). F ina l ly ,  combining 
equat ions (187) ,  (198) and (201) gives t h e  following expression f o r  the photo- 
emission cur ren t  from a high-Tc compound i n  i t s  superconducting s t a t e  

and the measured photoemission cu r ren t  is  

where D; is  given by equat ions (203) through (209). Equation (211) shows t h a t  
f o r  the superconducting s t a t e  of a high-T, ma te r i a l  the leading term of t h e  
photoemission cu r ren t  i s  l i n e a r  i n  T ,  and not  quadra t i c  i n  T a s  equat ion (181) 
shows t o  be t h e  case f o r  ordinary metals.  

B. Normal S t a t e  Photoemission. 

The pho toe l ec t r i c  cu r r en t  from the  normal s t a t e  (T > Tc) of a high-Tc 
supsrconductor ma te r i a l  i s  ca l cu la t ed  from t h e  genera l  complex number equat ions 
(187) through (194) by i n s e r t i n g  the  following general expression f o r  d? t h a t  



i s  valid f o r  p a r t i a l  spacetime c o h e r e n c e  into equat ion (188) . 

where 

t a n  B = n a e  / a n  
rln sl 

(213) 

and where ii is  defined by equat ion (193) .  The eva lua t ion  of t he  i n t e g r a l  i n  
equat ion (188) requires t h e  examination of two poss ib l e  cases ,  R e  6 c 0 and 
R e 6 > 0 .  

Case 1. Re 8 < 0 or v < v . 
0 

For t h i s  case the logari thm i n  equat ion (188) can be simply expanded i n  a 
power s e r i e s  with the r e s u l t  

where 
- m 

- 1  06 
a 

j e  
= (-1) / a e  exp[-crne '1+ j ( e  

0 
n + B q n )  1 sec BnTI dq (215) 

The r e a l  and imaginary p a r t s  of 5 a r e  w r i t t e n  as 
m m 

where 
m 

a-1 u E c o s 8 g  
LOR = (-1) l a  e I H c o s ( o 6  s i n  O 6  - un s i n  0 + O n  + Bnn)dn (217) 

o n 
M 

10 e H s in(oS  sin - OTI sin 9 + e +Bnn)dq (218) 
0 n Q 

where 

-on C O S  en H = sec B e n n (218A) 

This  is  the  general  case ,  and some s i m p l i f i c a t i o n s  can be made. 

C C C 
I f  Brl = 8,, = 2(e r  - Bt) = cons tan t ,  then f3 = 0 and the  integrals s impl i fy  

t o  t h e  following forms rl rl 

m C 
0-1 0 6  cos 96 -on cos en 

L : ~  = (-1) l o  e l e  c o s ( a  - oq s i n  eC)dn 
0 Q n (219) 

m C 
c 0-1 06 cos 9 6  -on cos O n  

LaI - (-1) / o  e b sin(a  - oq s i n  eC)dn 
0 rl (220) 

0 

where a = cons tan t  given by u 



a = o6 s i n  0 + 0' o 6 rl 

The i n t e g r a l s  i n  equat ions (219) and (220) can be w r i t t e n  as 

+ 
po(McO COS " o C MslJ s i n  a ) u 

+ L' - " ( M ~ ~  s i n  u - M~~ cos a0) 
a I u 

where 

-t 0-1 06 cos 0 g  0- 1 06 cos etR 
= - 1  /a e - 1  / u e  ( 2 2 4 )  

where 8& is  genera l ly  r e l a t e d  t o  t h e  i n t e r n a l  phase angle  of t i m e  for e l ec t ro -  
magnetism by equat ion (192) ,  and where 

m C -00 cos en 
cos(ori s i n  eC)ciq 

0 rl 

-On C O S  0; 
~ ~ ~ ( 0 : )  = l e sin(oq s i n  eC)dq 

0 rl 

The i n t e g r a l s  i n  equat ions (225) and (226) can be found i n  t a b l e s  of i n t e g r a l s .  
By def in ing  the  q u a n t i t i e s  

C C a = cos 8 = eos[2(ec - e t ) ]  
rl f (227) 

C C 
b = s i n  8 = sin[2(0: - 0,) J 

rl (228) 

the i n t e g r a l s  i n  equat ions (225) and (226) 

C 
The values of DR and DI f o r  = On = constant  are obtai.ned from equat ions 
(216), (222) and (223) t o  be 

m a, 

For the  normal s t a t e  of a high-Tc superconductor 0ri # 0 f o r  t he  e l ec t ron  
momentum and 0s 0 f o r  the electromagnet ic  waves i n t e r a c t i n g  with the  e lec-  
t rons ,  and i n  p a r t i c u l a r  

For R e  < 0 t he  measured photoemission cu r ren t  f o r  t h e  normal s t a t e  i s  obtained 
from equat ions (187), (216) and (217) t o  be 



C For t h e  more simple assumption t h a t  0, = 0, t h e  measured photoemission cu r ren t  
is  given by 

where i s  given by equat ion (230A).  Thus as wi th  ordinary metals, t h e  normal 
state of a high-T, supercanductor has a T~ dependence i n  t he  leading termof t h e  
photoemission cur ren t .  

C 
When 0: = 0 and B t  = 0 it f o l l o w s  t h a t  0; = 0 and equat ions (229) and (230) 

become with a = 1 and b = 0 

Mco = l/a MSG = 0 

and with B 6  = - etR - - - 0 BtR = 0 equat ion (216) becomes 

which i s  just t h e  Fowler r e s u l t  given i n  equation (184) f o r  v < v, . Equation 
(2358) can a l s o  be obtained direct ly  from equat ion (215)  by tak ing  On = 0 . 

For t h i s  case t he  i n t e g r a l  i n  equat ion (188) must be written as a general- 
i z a t i o n  of  he scalar form given i n  equation (185) 

where - 

By expanding the  logari thms in  power s e r i e s  it i s  easy t o  show that 
m rn 

where 

- - 6 
0-1 -06 

pD = (-1) l o  e exp [~nej'" j (Bv  + Bqn) 1 sec B n n  d r ~  
0 



The r e a l  and imaginary p a r t s  of equation (236) a r e  w r i t t e n  a s  

where 
m 

where 

0-1 -06 cos Bg 6 
Pa=(-1) / o e  1 O COS( - 5 6  s i n  e 6  + on s i n  O n  + O q  + Bqn)dq (246) 

0 

0-1 -a6 cos eg 6 
Po, = (-1) /o e I G s i n (  - 06 s i n  f3 + on s i n  0 + eq + Bnn)d"247) 

0 6 n 

m 
0-1 U ~ C O S ~ ~  

TOR = (-1) / o  e 1 H cos(u6 sin O 6  - on s i n  O q  + O q  + B,,)dn (248) 
6 
m 

0-1 06 cos 8 6  
T u ~  = (-1) /a e H s in(o6  sin B - oq s i n  8 + B n  + Bnn)dn (249) 

6 6 n 

where H i s  given by equat ion (218A) and C is  given by 

url cos en  G = sec B e n rl (2498) 

Therefore combining equat ions (242) through (249) g ives  

where 06 = - O r R  = O g R  = constant  i s  assoc ia ted  w i t h  the electromagnet ic  
waves i n t e r a c t i n g  with the  normal s t a t e  of t he  high-Tc material and producing 
photoelectrons.  

C For t he  s p e c i a l  case  when Bq = 0,, = cons tan t ,  t he  i n t e g r a l s  i n  equat ions 
(246) through (249) s impl i fy  as fol lows 

6 c 
c 0- 1 -06 cos Bg r an cos O n  P~, = (-1) /B e e cos(y, + 00 s i n  Bc)dq 

b n 
(252) 

6 c 
= (- l )u- l /o  e 

-06 cos 86  c 
p:1 

J eU"OS en s in(y  + on sin e )dq 
0 0 tl 

(253) 



m 
C 0- 1 C 

= 1 / u  e u s  cos 06 e - u w ~ s  0, C 

T~~ cos(au - an s i n  0,,)dn (254) 
6 

m C 
0-1 a6 cos B s  

T : ~  = (-1) /o e J .-OTI COs O n  s i n ( a  - on sin ec)dn 
0 n (255 )  

6 

where au  i s  given by equat ion (221) and where 

0 
= - 06 sin 8 + 0' 

6 n (256) 

The i n t e g r a l s  i n  equat ions  (252) through (255) can be  r ewr i t t en  as  

C - 
PaR = vo(Nco cos Y u - Nsu s i n  yo) (257) 

= - POI - vi(Ncu s i n  yo + Nsu cos yo) (258) 

C + 
TOR = ua(Q,, cos + Q,, 5 

s in  a ) a (259) 

c - + 
TuI - uu(Qco s i n  a u - Q,, cos a,) (260) 

where p: is  given i n  equat ion (224) and where 

- - 1  -06 cos 06 = (-1)~-1 -US cos B f ~  
= -  / a e  /a e 

and where 
6 c 

on cos en  
~~~(6,e:) = I e cos(ari s i n  eC)dn 

0 rl 

6 c 
C on cos eq 

NSa(6,eq) = J' e sin(ori s i n  €jC)drl 
0 

rl 

m C 
C -On cos 0, 

Qcu(a,eq) = J e cos(on sin eC)dr, 
6 n 
0) 

C -00 cos 0; 
Qs0(69e,,) = e s i n  (on sin eC)dq 

6 rl 

The i n t e g r a l s  i n  equat ions (262) through (265) a r e  found i n  t a b l e s o f  in tegrals  
and have the  values * 

NcO(6,0R) = l / o  eoa6[a cos(ob6) + b sin(ob6) ] - ~ - a / o  (266) 

c -0a6 
Qso(6 ,8 ) = l / o  e [ a  s in(ob6)  + b cos (ob6) ] ' 

11 
(269) 



where a and b a r e  def ined i n  equat ions (227) and (228) r e spec t ive ly .  The va lues  
of DR and DI for en = 0; = constant  are obtained from equat ions (250) and (251) 
t o  be 

where equat ions (257) through (269) can be used t o  c a l c u l a t e  these q u a n t i t i e s .  

F ina l ly ,  t he  photoemission curren t  f o r  t he  normal s t a t e  of a highyTc super- 
consuctor with R e  > 0 is given by 

where DR is given by equat ion (250) f o r  t h e  case 6 = Btl(q) , and by 
tl 

C C 
for t h e  s implifying case  where en = On = cons tan t  and where DR is  given by 
equat ion (270). Therefore from equat ions (272) and (273) it is c l e a r  t h a t  t h e  
photoemission cur ren t  from the  normal s ta te  of a high-Tc compoundhasaleading 
t e r m  which is quadra t ic  i n  t h e  temperature of the material. 

C 
Equations (252) through (271), with t he  approximation t h a t  0, = 8, and 

Bt = 8; a r e  cons tan ts ,  a r e  v a l i d  f o r  t he  normal state of a high-Tc superconduc- 
tor. It is  poss ib le  t o  reduce these equat ions t o  t h e  case of ordinary m e t a l l i c  
behaviour by making t he  following s u b s t i t u t i o n s  

Then t h e  i n t e g r a l s  i n  equat ions (266) through (269) become 

and t h e r e f o r e  from equat ions (257) through (260) 



and from equat ion (270) 
- m 

where t h e  following i d e n t i t y  was used31 

Equation (281) is just t h e  Fowler r e s u l t  f o r  ord inary  metals t h a t  was presented 
i n  equat ion (186) 

c C The values of e t  and Or (o r  et  and 6,) f o r  t h e  e l e c t r o n s  i n  t h e  normal 
s t a t e  (T > Tc) of a high-Tc superconductor ma te r i a l  can be obtained by compar- 
ing t h e  measured va lues  of t h e  photoemission cu r ren t  with t h e  predic ted  va lues  
given by equat ions (233) o r  (234) f o r  t he  ca se  v < vo and by equat ions (272) 
o r  (273) f o r  t h e  ca se  v > vo..The va lue  of By = - O t ~  f o r  t h e  electromagnet ic  
waves i n t e r a c t i n g  with t h e  normal s t a t e  of a high-Tc compound may poss ib ly  be 
obtained from photoemission experiments. Note t h a t  according t o  equat ions 
(233) ,  (234), (272) and (273) t he  leading  term of t h e  pho toe l ec t r i c  cu r r en t  is  
propor t iona l  t o  ~2 for t h e  normal state of a high-Tc compound. The leading  
term of the  pho toe l ec t r i c  cu r r en t  from t h e  superconducting s t a t e  of high-Tc 
matter  is  l i n e a r  in T according t o  equat ion (211). The v e r i f i c a t i o n  of this 
l i n e a r  dependence on T may poss ib ly  al low t h e  determinat ion of O t  = a16 and 
Or = 1~13  f o r  e l e c t r o n s ,  and 0,, = - etR = 7113 f o r  photons e j e c t i n g  e l ec t rons f rom 
t h e  sur face  of a high-T, material i n  i ts superconducting s t a t e .  

5. CONCLUSION. The superconducting s t a t e  of ahi.gh-Tccompoundis descr ibed 
a s  being a completely coherent spacetime s t a t e  of e l ec t rons  i n  Cooper p a i r s .  
L i k e  ordinary s u p e r c ~ n d u c t i v i t y ,  high-Tc superconduct ivi ty  is  a macroscopic 
quantum phenomenon. By considering the  coherent spacetime a c c e l e r a t i o n  of 
e l ec t rons  i n  Cooper p a i r s  it is  shown t h a t  t h e  normalized superconduct ivi ty  en- 
ergy gap f o r  a high-Tc ma te r i a l  is  given by (6 / s ) (3 .52 ) / (1  -  IT 8,) where 
Ba = r e l a t i v e  phase angle of t h e  e l e c t r o n  acce l e ra t ion .  The o f t e n  measured 
l a r g e  values of t he  normalized superconduct ivi ty  energy gap is  due t o  t h e  fac-  
t o r  ( 6 1 ~ )  and is  n o t  neces sa r i l y  assoc ia ted  wi th  a s t rong  coupling of t h e  elec-  
t rons .  The 6/n  f a c t o r  a r i s e s  from the coherenr spacetime s t a t e  for e l e c t r o n s  
which has  Ot = a16 f o r  t h e  va lue  of t he  i n t e r n a l  phase angle f o r  t i m e .  The nor- 
m a l  s t a t e  (T > Tc) of a high-T, ma te r i a l  is  descr ibed a s  a p a r t i a l l y  coherent 
spacetime s t a t e .  Incoherent ,  p a r t i a l l y  coherent and coherent thermodynamic 
func t ions  a r e  introduced t o  descr ibe  slow, moderately f a s t ,  and u l t r a f a s t t h e r -  
modynamic processes  r e spec t ive ly .  These processes  can occur i n  t h e  var ious  
spacetime s t a t e s  of ord inary  o r  high-Tc mat te r .  Because t h e  e lec t ron-e lec t ron  
i n t e r a c t i o n  is weak, a nonin terac t ing  e l e c t r o n  gas in, a coherent o r  p a r t i a l l y  
coherent spacetime s t a t e  is used t o  descr ibe  t h e  photoemission of e l e c t r o n s  
from the  su r f ace  of t h e  superconducting and normal s t a t e s  r e spec t ive ly  of a 
high-T, superconductor. The leading  term of t h e  pho toe l ec t r i c  cu r r en t  is  l i n -  
e a r  i n  temperature f o r  t h e  superconducting s t a t e  and quadra t i c  i n  temperature 
f o r  t he  normal s t a t e  of a high-Tc mater ia l .  
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QUANTUM THEORY OF TIME: AND THERMODYNAMICS 

Richard A. Weiss 
U. S. Army Engineer Waterways Experiment S t a t ion  

Vicksburg, Mis s i s s ipp i  39180 

ABSTRACT. Quantum thermodynamics is introduced through a quantized rela- 
t i v i s t i c  t r a c e  equation. This equat ion descr ibes  t h e  d i s c r e t e  and continuous 
spec t r a  and eigenfunct ions of macroscopic thermodynamic.systems. For s o l i d s  
and quantum l i q u i d s  t h i s  is  equiva len t  t o  a s e t  of coupled eigenvalue equat ions 
f o r  t h e  i n t e r n a l  energy and Griineisen parameter. Simultaneous eigenvalue equa- 
t i o n s  are developed f o r  i n t e r n a l  energy, time, time dimension and space dimen- 
s ion.  These equations determine t h e  e f f e c t s  of r e a l  s t a t e  equat ionson the  rates 
and geometrical s t r u c t u r e s  of phys ica l  processes such as chemical and nuclear  
r eac t ions  which occur i n  bulk mat te r .  High-Tc superconductivity i s  sugges ted to  
be assoc ia ted  w i t h  t he  coherent spacetime s t a t e  of e l ec t rons  i n  Cooper p a i r s .  A 
quantized r e l a t i v i s t i c  thermodynamic t r a c e  equation f o r  coherent spacetime i s  
developed, and t h i s  equat ion i n  conjunction with t h e  quantized coherent time, 
time dimension and space dimension equat ions are suggested t o  descr ibe high-Tc 
superconductivity.  The f i r s t  o rder  macroscopic quantum eigenvalue equations f o r  
time, time dimension and space dimension a r e  the  bulk matter  equiva len ts  of t h e  
Dirac equat ion which descr ibes  microscopic systems. The eigenvalue equations 
f o r  t i m e ,  time dimension and space dimension are solved and y i e l d  s o l u t i o n s t h a t  
p red ic t  s t ruc tu red  energy and pressure .  The so lu t ion  f o r  a p a r t i c l e  con f ined to  
an energy-pressure box is  obtained.  The eigenvalue equations suggest t h a t  time 
and dimension can be i n t e r p r e t e d  t o  be wave funct ions i n  energy-pressure space. 
For t h e  case where the  thermodynamic gauge parameters are near ly  cons tan t ,  t he  
first order  t i m e  and dimension equat ions assume a Schradinger form whose solu- 
t i o n s  can a l s o  be used t o  determine t h e  quantum s t r u c t u r e s  of energy and pres- 
sure .  These r e s u l t s  have a p p l i c a t i o n s  t o  as t rophys ics  and geophysics because 
the  i n t e r n a l  processes of s t a r s  and p l ane t s  a r e  a f f ec t ed  by t h e  quantized time 
and dimension s t r u c t u r e s  of energy and pressure.  The macroscopic quanrumequa- 
t i o n s  may a l s o  be usefu l  f o r  t he  desc r ip t ion  of quantum devices  t h a t  u t i l i z e  
d i f f e r ences  i n  energy s t a t e s  t o  conf ine  e l ec t rons  i n  quantum w e l l s ,  wires  and 
dots .  

1. INTRODUCTION. Time e n t e r s  t h e  caPculat ions of c l a s s i c a l  and quantum 
physics a s  an independent parameter i n  t he  scores  of d i f f e r e n t i a l  equations of 
physics such a s  Newton's l a w  of motion, t he  equat ions of Lagrange, Hamilton, 
Schrtidinger and Dirac, and t h e  E ins t e in  f i e l d  equat ionsof  g e n e r a l r e l a t i v i t y .  1-1 5 

These laws and equat ions teach  us  nothing about t h e  na ture  of time because t i m e  
e n t e r s  only in  t h e  denominators of t h e  de r iva t ives  t ha t  appear i n t h e e x p r e s s i o n  
of t h e  laws of na ture .  

A b e t t e r  understanding of t i m e  can be obtained i f  time can be r a i s ed  from 
the  denominators of t he  d e r i v a t i v e s  t h a t  appear i n  t h e  equations of phys ics ,and  
placed i n  t he  numerators of laws t h a t  descr ibe  the dependence of time on such 
bas ic  q u a n t i t i e s  as energy dens i ty  and pressure o r  temperature and dens i ty .  16 



In this way differential equations for time can be determined,and'time assumes 
a more fundamental role akin to the  wave function of the Dirac and Schrl3dinger 
equations. In this sense time is easier to describe than space because space, 
through the concepts of energy density and pressure, still remains as as inde- 
pendent parameter in the denominator of the time equations. Time and the di- 
mentions of time and space are local quantities that depend on energy and pres- 
sure. 16 

The complex number internal energy, energy density, pressure, time, time 
dimension, and space dimension are written as1 ' 

whir= 5 = C/V holds for incoherent space. Also BE = . The corresponding un- 
renormalized time, dimension, and thermodynamic functions will be designated as 
in equations (1) and (2) but with a superscript "a" added to the magnitudes and 
internal phase angles of these quantities. From equations (1) and (2) the foL- 
lowing differential expressions are valid assuming the partial coherence of the 
thermodynamic functions 

These differentials can be rewritten as 

df = ejmu iec fiUU d~ = e " ~  csc B~~ udeU 
0 

dE = ejmE sec BEE dE = ej csc BEE EdOE 

d~ = e j m p  sec fipp d~ = ejmp csc B~~ pdep 

- @ 
d t  = e j @ t  sec dt = eJ t csc B td8 

tt t t r 
- j@Dt .@ - d6, = e '~t~t dDt = ,3 ~t CSC @ ~ t ~ t  D t d~ ~t 

dD = e dEg = ejmDs sec BDsDa j @ D s  CSC %SDS D s d e ~ s  

where 

tan fiUU = Uaeu/aU tan B~~ = paep/aP tan B~~ = taet/at 

= D ae /aDt 
tan B ~ t ~ t  t ~ t :  tan 'DSD~ 

= ~ ~ a e ~ ~ / a ~ ~  

tan BEE = EaeE/aE 



From equations (5) and (8) it follows that the bulk modulus is given by 

where 

5 = sec B~~ napIan = csc Bpp Paep/an (15B) 

'KT = @P ( 1 5 0  

where Qp is given in equation (14), and n = N/V . 
The renormalization group equations for energy, t:ime, time dimension, and 

space dimension are for incoherent spacetime written in complex number form 
as16-18 

- 
where E , E , Et and Es = complex number values of the renormalized energy densi- 

a ty, time, time dimension and space dimension respectively, Ea , ta , D: and Ds = 
unrenormalfzed values respectively of the energy density, time,. time dimension 
and space dimension. Equations (16) through (19) are coupled nonlinear parcia1 
differential equations whose solutions are difficult to obtain unless simplify- 
ing assumptions are introduced. The gauge parameters for incoherent space are 
defined as follows1 , l 8  

where for incoherent space = EV and Ua = Eav . For the unrenromalized vacuum ~t~ = 1 and DgV = 3 . If for the renormalized vacuum D: < 1 and Dx < 3 , then 
the vacuum is fractal. If for the spacetime in matter Dt < 1 and Ds c 3 then 
this spacetime is fractal. The renormalization group equations (16) through (19) 
determine the effects of the gauge parameters of real state equations on the 
energy, process rates, and geometrical structure of spacetime that are associ- 
ated with bulk matter. These equations are gauge and, conformal invariant.16pr17 
The time evolution equations for relativistic thermodynamics can be obtained by 



requiring conformal and gauge fnvariance of equation (17) which is the renormal- 
ization group equation for time.'' This brings the time down into the denomina- 
tor as required for conventional rate equations. 

Equation (16) can be written in terms of the internal energy as1 7 y 1  a 

The f o m  of equation (22) follows from gauge invariance and con£ ormal invarianae? 
The energy density and pressure of solids and low temperature quantum liquidsare 
written in the following form17y1 ' 

- - 
where E and = renormalized energy density and pressure respectively, Eo_and Po = 
renormalized zero-temperature values of the energy density and pressure, E, = - 
thermal energy density coefficient, yo = Griineisen parameter whichis independent 
of temperature, and u = number.that describes the temperature variation. The 
zero-temperature forms of equation (22) can be written in any of the following 
ways with DO = 1 and 6; = 3 as the zero-temperature values of D and ~ ~ " 3 ' ~  

t t 

where KO = zero-temperature value of the bulk modulus'given by 

and where co = i0/v = incoherent average energy density a t  zero temperature. 
The corresponding To component of equation (16) is given for 6' = 1 and E0 = 3 
byI7 t S 

The unrenormalized energy density, pressure, bulk modulus and Grtineisen para- 
meter are given by equations (23) through (25) and equation (31) with the super- 
script "a" added to the equations. 



The de r iva t ives  i n  equat ions (17) through (19) can be w r i t t e n  for rhe  gen- 
eral  case of t h e  p a r t i a l  coherence of time and dimension and the p a r t i a l  coher- 
ence of energy and pressure  as 

aE/aE = sec  B~~ cos B E E  a t / a E  ejmtE 

j@t€ = csc  Btt  s i n  BEE t / E  a e t / a e E  e 

af/aP = sec B,, O B, a t l a p  e j @ t p  

= C ~ C  B,, s in  B~~ LIP ae t / aep  e j @ t ~  

aii,/aE = sec B,,,, cos B a ~ , / a E  e j m ~ t E  
EE 

= csc 6 s i n  6 D I €  a e D t l a e E  e J @ D ~ E  
D t D t  EE t 

- - 
a D  /aP = sec  B~~~~ 

t 
an l ap  ej@Dtp cos Bpp t 

- 
- CSC g ~ t ~ t  sin B~~ DtlP aODt / aeP  

a6 /a€ = sec BDsDs c o ~  f iEE a~ l a €  eJQDs€ 
S S 

= csc  B DSDS Sin BEE D IE aeDS/aeE . j r n ~ s €  

- 
a D  / a P  = sec  BDsDs 

s 
aD / a ~  ejQDsp 

COS BPP . s 

= csc BDsDs s i n  ppp D ~ I P  aeDslaep  J@DSP 

where 

Equations (17) through (19) a r e  w r i t t e n  i n  terms of t h e  independent v a r i -  
bles E , P , Ea and pa but can be w r i t t e n  i n  terms of p a r t i c l e  number dens i ty  n 
and temperature T so  t h a t  t h e  set of equat ions (16) through (19) can be w r i t t e n  
as follows16 



a a 5 + - 6 1 = E~ + D , B ~  
s P ( 4 2 )  

- - a e - q2 a f / a ~  + s2 a i l a n  - ta - 9, a t a / a ~  + S; a ta /an  ( 4 3 )  

a a 6, + i2 a i i t / a ~  - z2 a5 /an = D + qD aD:/at - S: a~:/an 
t C ( 4 4 )  

- ijs + iz aCS/a~ - s2 aEs/an = D: + q; a ~ z / a ~  - sa a~:/an 
D ( 4 5 )  

where1 

- 
= fi6 B + P E S E p  a a a a  

q2 t E  qD = h DtBE ( 4 6 )  
- -- -- - a a a a  

2 = ~ D ~ B ~  C eDsBp sD = & DtBE ( 4 7 )  

and where ha and ga are calculated in the same manner as h and g except: t h a t  now 
t he  superscript "a" is  a d d e d t o  E a n d ~ t o i n d i c a t e t h e r e n o r m a l i z e d c a l c u l a t i o n .  

Equations (16) through (19) s i m p l i f y  f o r  t h e  case of incoherent  energy and 
pressure where the energy dens i ty  and pressure  can be taken as r e a l  numbers 

while equat ions (42) through (45) a r e  w r i t t e n  as 

E + D , B ~  - D ~ B ~  = + D:B: 
- 

a a t a / a t  + si ata/an t - q2 a t / a ~  + s2 aF/an = ta - q,, 



where q2 and s2 are given by equations (46) and (47) with t h e  b a r s  removed. 
For incoherent space E = U/V and B E  and Bp are given by the  real number equiv- 
a l e n t s  of equat ions (20) and (21). 

For coherent t i m e ,  coherent dimension, bu t  incoherent s ace ,  energy and 
pressure i t  fol lows t h a t  equations (51) through (54) become1 ! 

where f o r  coherent t ime, t i m e  dimension and space dimension i t  fol lows from 
equat ions (3) through (5) t ha t16  

bur f o r  incoherent  space and incoherent energy B E  and Bp a r e  given by equarions 
(20) and (21) r e spec t ive ly  with the  bars removed. Equations (60) through (62) 
descr ibe  coherent t i m e  and dimension s t a t e s  (for incoherent  space and energy) 
whose coherency a r i s e s  from spacetime i n t e r a c t i o n s  on an  incoherent  energy and 
spacetime s t a t e .  For t h i s  case  t h e  time and dimensions of t h e  unrenormalized 
s t a t e  descr ibed by t h e  r i g h t  hand s i d e s  of equat ions (60) through (62) are in- 
coherent.  Both t h e  magnitude and the  i n t e r n a l  phase angle of t h e  time can be 
obtained from equat ion (60) t o  be16 

ran e = D ~ B ~  a e t / a E  - D s ~ *  a e t / a P  
t ( 6 4 )  

where t , D r  and Ds a r e  taken t o  be cons tan ts .  S imi la r ly  from equat ions (61) 
and (62) i t  fol lows t h a t  

t a n  eDs = D B aeDs/aP - D , B ~  aeDs laE  s P (68) 

For equat ions (60) through (69) the  renormalized time and dimensions are co- 
herent  but space and energy remain incoherent .  Equations (60) through (69)  



descr ibe  a spacetime i n t e r a c t i o n  induced broken symmetry of t ime, t i m e  dimen- 
s ion  and space dimension. This  system may descr ibe  a s p e c i a l  form of high-'& 

_supe rconduc t iv i ty  where t h e  i n t e r n a l  phase angle  of space has a cons tan t  va lue  
0, = a13 and the  i n t e r n a l  phase ang le  of t i m e  is  a va r i ab l e  which may poss ib ly  
be engineered t o  have t h e  va lue  Or = a/6 which is  assoc ia ted  with high-Tcsuper- 
conduct ivi ty  . 16,19 A cons tan t  phase angle  of the space coord ina tes  would drop 
out  of t h e  energy dens i ty  and p re s su re  terms i n  equat ions (17) through (19)and 
y i e l d  t h e  s impl i f ied  equat ions (52) through (54) where E and P are taken t o  be 
r e a l  numbers. For t h i s  type  of superconductor t h e  unrenormalized s t a t e  ( F a ,  
ta , D: , D;) does not  have an i n t r i n s i c  broken symmetry. It may be poss ib l e  t o  
engineer the vacuum, by t h e  in t roduc t ion  of ex t e rna l  f i e l d s ,  i n  such a way tha t  
ordinary materials become high-Tc superconductors.  

For some'physical systems t h e  nuc lear ,  atomic o r  molecular s t r u c t u r e  fn- 
duces a broken symmetry i n  t h e  l o c a l  spacetime and i n  t he  thermodynamic func- 
t i o n s  of t he  unrenormalized s t a t e .  For t h e  case  where spacetime has a broken 
symmetry t h e  energy t r a c e  equat ion is  w r i t t e n  as 

where now 

Equivalent ly,  equat ion (70) and f '  = E'v' and cat = F a ' V '  g ives  

where f o r  p a r t i a l l y  coherent  spacetime16 ' 

7 = V e j e ~  df = e j m v  s e c  BW dV = ejQv csc  BW VdeV (75) 

tan Bw = v a e v / a V  QV - - BV + BW (76) 

and where now f o r  t h e  f i r s t  time t h e  possibility of complex number unrenormal- 
ized thermodynamic func t ions  on t h e  r i g h t  hand s i d e s  of equat ions (70) o r  (73) 
is considered. The broken symmetry of t h e  unrenormalized state i s  due t o  a 
s p e c i a l  s t r u c t u r e  of mat te r .  From equat ion (73) i t  follows t h a t ,  f o r t h e s t a t e  
equat ions of s o l i d s  and quantum l iq ,u ids  as i n  equations (23) through (25), t he  
same form of t he  r e l a t i o n s  given i n  equat ions (26)  through (32) a r e  v a l i d  wi th  
the replacements V -t V' and n + n '  . 

The average energy dens i ty  f o r  p a r t i a l l y  coherent spacetime i s  given by 



where E' = average energy dens i ty  f o r  p a r t i a l l y  coherent spacetime. For t h e  
general  case of p a r t i a l l y  coherent spacetime and p a r t i a l l y  coherent-energy, 
equat ions (16) through (19) become 

where Ei and -$ are given by equat ions (71) and (72) r e spec t ive ly ,  andwhere t h e  
unrenormalized va lues  of time, t i m e  dimension, space dimension, energy and pres- 
s u r e  a r e  now complex numbers because of t h e  s p e c i a l  nuc lear ,  atomic o r  molecular 
s t r u c t u r e  of mat te r  a s ,  f o r  example, i n  t h e  case of high-T, superconductors. The 
renormalizat ion group equat ions (78) through (81) car1 be r e c a s t  i n  terms of par- 
t i c l e  number dens i ty  n r  = N/V1 and temperature T i n  a form analogousro equat ions 
(42) through (45) .  

The volumes f o r  incoherent  space with BW = 0 , and f o r  coherent space with 
BW = n/2, a reob ta ined  from equation (74) and a r e  given r e spec t ive ly  by 

v 1  = v V '  = ve, (82) 

where f o r  coherent space V = cons tan t .  For coherent spacetime the  average ener- 
gy dens i ty  is  given by 

where cCS and ECS = coherent spacetime i n t e r n a l  energy and average energy den- 
s i t y  r e spec t ive ly .  For t h e  case  of coherent spacetime and p a r t i a l l y  coherent 
energy, t h e  gauge func t ions  are obtained from equat ions (71) and (72) t o  be 

where V = constant .  The renormalizat ion group equat ions f o r  coherent space, 
t i m e  and dimensions are then obtained from the  general  set of equat ions (78)  
through (81) as fol lows f o r  a slow process  i n  rhe  superconducting s t a t e  of a 
high-Tc superconductor 



where equat ion (63) was used t o  descr ibe  t h e  v a r i a t i o n  of coherent time and d i -  
mensions. For t h i s  ca se  time, space and dimension a r e  coherent ,  and the coher- 
ency occurs  a l s o  i n  t h e  unrenormalized s t a t e  due t o  m a t e r i a l  s t r u c t u r e .  The en- 
ergy is  p a r t i a l l y  coherent .  

For the case  of t o t a l l y  coherent t i m e ,  space, dimension and i n t e r n a l  energy, 
corresponding t o  an u l t r a f a s t  process  i n  t he  superconducting s t a t e  of a high-T, 
superconductor,  t h e  condi t ions  are 

B,, = s / 2  BW = r / 2  BUU = r / 2  (90) 

The average energy dens i ty  f o r  t h i s  case is w r i t t e n  as  

E~~ = ctC/ (vev) ~ t c a  - tca 
= u / (ve,) 

where u~~ and E~~ = t o t a l l y  coherent i n t e r n a l  energy and energy dens i ty  respec- 
tTvely. The d i f f e r e n t i a l  of the i n t e r n a l  energy i s  w r i t t e n  f o r  pure r o t a t i o n a s  
t h e  fol lowing u l t r a f a s t  process  condition1 

- t c  d~~~ = jU de, 
tc d ~ "  = jE dB - ~ ~ ~ / e ~  dBV 

E (93) 

t c  where U = cons tan t .  Equation (63) g ives  t h e  d i f f e r e n t i a l s  df  , dEt and dEs and 
f o r  t h i s  case t h e  d e r i v a t i v e s  i n  equat ions (79) through (81) a r e  w r i t t e n  a s  

with analogous express ions  f o r  t he  unrenormalized de r iva t ives .  Then t h e  re- 
normalizat ion group equat ions (78) through (81) a r e w r i t t e n  f o r t o t a l c o h e r e n c e a s  



which are the renormalization group equations for an ultrafast process occurring - 

in the superconducting state of a high-Tc superconductor. The gauge functions 
for coherent spacetime and coherent internal energy are given by 

with similar expressions for the unrenormalized gauge functions. 

In this paper a material is described as ordinary if the spacetime has a 
zero or constant broken symmetry. The normal state of a high-Tc material is de- 
scribed by partially coherent spacetime, and the superconducting state is de- 
scribed by a coherent spacetime state. Thermodynamic processes are described as 
being slow for zero or constant broken symmetry of the thermodynamic functions, 
moderately fast for partial coherence of the thermodynamic functions, and ultra- 
fast if the thermodynamic functions change coherently. 

The effects of the gauge parameters and fJp in the renormalization group 
equations for energy, time, time dimension and space dimension is greatest for 
systems that have real state equations with large departures from ideal systems. 
Therefore at ordinary pressures the renormalization group equations will have 
significant effects for liquids and solids but the effects on gases will be 
small except at high pressures. The geometry and react:ion ratesof chemicalpro- 
cesses in liquids and solids will be affected by the gauge parameters which ap- 
pear in the renormalization group equations that determine E,t,Dt and Ds . 
This is true, for instance, for the Belousov-Zhabotinskii reaction in liquids, 
The reaction rates and the fractal nature of the reaction product geometry for 
a real system will be described by the renormalized values of the time t and 
space dimension Ds , and these will be different from the predictions of con- 
ventional calculations which give the unrenormalized results ta and D: respec- 
tively for the time and fractal space dimension of the reaction. 

This paper develops the quantum eigenvalue equations corresponding to the 
renormalization group equations for energy, time, time dimension and space 
dimension that appear in equations (78) through (81) and their variations. 
Briefly, the sumnary of the paper is as follows: section 2 derives the neces- 
sary thermodynamic equations for application to quantum thermodynamics, Section 
3 derives relativistic trace equations for broken spacetime symmetry, Section 4 
introduces quantum thermodynamics and the thermodynamic eigenvalue equations, 
Section 5 studies the quantum theory of time and dimension and derives first 
order Dirac-like eigenvalue equations for time and dimension, Section 6 obtains 
solutions to the first order time and dimension eigenvalue equations, Section 7 
treats the substructure of time and dimension, and finally Section 8 considers 
the quantized time and dimension structures of pressure and energy that can be 
derived from a SchrBdinger-like form of the time and dimension eigenvalue equa- 
tions. 



2. THERMODYNAMICS AMD BROKEN SPACETIME SYMMETRY. This section gives a 
very brief review of broken symmetry thermodynamics. For broken spacetime 
symmetry the first and second laws of thermodynamics can be written as1' 

= fiSS d~ ejPs = csc fiSS sdeS e j @S (105) 

where 

tan B~~ = saes/as OS = eS + BSS (106) 

The pressure and and the generalized forces and fi are represented by 

= P e j e ~  P = (107) 

- 
2 = Me j 9, fi = Mej 61; (108) 

hdf = F(dV( = F ~ v '  zda = Eldoll (109) 

- 
a = ae j 0, do = ej" a m  c8,, do = ejma csc fia8, ado8, (110) 

tan Baa = aaecx/aa Qcr = ea + Baa (111) 

where 

= e t  + e  + B~ @P P V OM = 8; + Ba f Baa (112) 

From equation (103) the following basic thermodynamic equations can be derived 
by neglection d l  

~ a s / a ~  = a C / a ~  (113) 

~aE/laf/ = af/lavl + P' (114) 

a:/ 1 aVl  = T ~ F / ~ T  (1 15) 
- 

aE/  1 avl = T ~ F / ~ T  - P ( 1.1 6) 

where dF is given by equations (5) and (8). Often these equations are written 
in terms of the average density of the thermodynamic functions. 

The incoherent average energy density E and t h e  average energy density for 



broken syrmnetry spacerime E' a r e  given by equat ions (1) and (77) r e spec t ive ly .  
S imi la r ly ,  t he  incoherent  average entropy dens i ty  3 and t h e  average entropy 3' 
f o r  spacetime with p a r t i a l  broken symmetry a r e  given by 

where V' i s  given by equat ion (74 ) .  The average energy dens i ty  f o r  coherenr 
spacetime zC8 and t h e  average energy dens i ty  f o r  coherent thermodynamic func- 
t i o n s  and coherent spacetime EtC a r e  given by equations (83) and (92) .  In  a 
s imi l a r  fash ion  t h e  average entropy dens i ty  f o r  coherent spacetime gCS and t h e  
average entropy dens i ty  f o r  both coherent spacetime and coherenr thermodynamic 
func t ions  a r e  given by 

The corresponding average d e n s i t i e s  of t h e  general ized coordinates  f o r i n c o h e r -  
e n t  spacetime and f o r  p a r t i a l l y  coherent spacetime a r e  given by 

and the  corresponding average values of the  general ized coordinate  dens i ty  f o r  
coherent spacetime and f o r  t o t a l  coherence of both spacetime and thermodynamic 
funct ions a r e  r e spec t ive ly  

Coherent thermodynamics i n  coherent spacetime i s  assoc ia ted  with an  u l t r a -  
f a s t  thermodynamic process  i n  t h e  superconducting s t a t e  of a high-T, supercon- 
ductor .  For t h i s  case, i n  a d d i t i o n  t o  Bt t  = 1 ~ 1 2  , t he  following cond i t i onsho ld  

with t , U , S ,  V and a = cons tan ts .  I n  t h i s  case equation (103) g ives  f o r  t o t a l  
coherence 

= TS t c  e j  (eS*/2) - e tc e j  (9@/2) - .feM (123) 

where t h e  d i f f e r e n t i a l  t o t a l l y  coherenr entropy dens i ty ,  energy dens i ty ,  and 
general ized coordinate  dens i ty  are given r e spec t ive ly  by 

where stC , E~~ and a r e  t h e  magnitudes of t h e  complex numbers given i n  equa- 
t i o n s  (118), (92) and (120) r e spec t ive ly .  A simple so:lution t o  equat ion (123) 



uses t h e  approximation 

9 % 8 % 8 + a12 % 9, + s / 2  
P M S  (127) 

and g ives  t h e  pressure  magnitude as 

t c  p % TstC - e - 
Further  i n s i g h t  i n t o  t h e  approximate so lu t ions  i n  equat ions (127) and (128) 

can be obtained by not ing  t h a t . f o r  coherent thermodynamics and coherent space- 
time assoc ia ted  wi th  u l t r a f a s t  processes  i n  high-Tc superconductors,  equat ions 
(113) through (116) can be w r i t t e n  a s  

i n  conjunction wi th  equat ion (121). From equation (131) i t  fo l lows  t h a t  

A comparison of equat ions (127) and (133) shows t h a t  Bpp % 0 , and the re fo re  
t h e  pressure  behaves i n  an approximately incoherent  manner. 

3. RELATIVISTIC TRACE EQUATIONS. This sec t ion  develops r e l a t i v i s t i c  t r a c e  
equat ions f o r  fou r  thermodynamic and spacetime condit ions:  A) p a r t i a l l y  coherent 
energy and p a r t i a l l y  coherent  spacetime, B) incoherent  energy and incoherent  
spacetime, C) p a r t i a l l y  coherent energy and coherent spacetime, and D)  coherent 
energy and coherent spacetime. The case  of coherent energy and incoherentspace-  
t i m e  is  formally i d e n t i c a l  t o  case  D.  The t r a c e  equat ions a r e  t h e  energy renor- 
mal iza t ion  group equat ions for bulk matter with r e a l  s t a t e  equat ions.  

Case A. P a r t i a l l y  Coherent Energy and P a r t i a l l y  Coherent Spacetime. 

For p a r t i a l l y  coherent energy and p a r t i a l l y  coherent spacetime, correspond- 
ing  t o  a moderately fast thermodynamic process i n  t he  normal s t a t e  of a high-T, 
superconductor, t h e  s p a t i a l  volume is  represented by V' given by equat ion ( 7 4 ) ,  
and equat ion (73) i s  t h e  t r a c e  equat ion f o r  t h i s  case 

6' + 6 ; ~ ( d G ' / d ~ )  - - S : V ' ~ / ~ V '  (F 'v ' ) -  = ta' + ~ ~ ~ ~ ( d i ~ ~ / d ~ ) ~ ~ , ~ ~  ( 1 34A) 
P 'V'  u ' 

where d i '  and d f a r  are given by equat ion (6 ) .  I f  t h e  space and time dimensions 



are written analogous to equations (23 )  and ( 2 4 )  for solids and low temperature 
quantum liquids as 

- - - - D' =Dl +jj' To f ... D' = Dlo 
S s 0 s 0 t 

+ 6;d0 + - * -  

and the internal energy, energy density and pressure as 

- 
U' = c1 + 5lTu 

0 0 - 
51 = EI + E'T' 

0 0 
PI = PA + FAT' 

where 
- 
E' = F;/vf 
0 

5' = i;/vl u 

where 7' = Grtineisen function associated with the broken symmetry volume V' , 

For the case of solids and quantum liquids described by equations ( 2 3 ) ,  
(24) and ( 1 3 5 ) ,  the trace equation (134) has a zero-temperature component and a 
To component. The zero-temperature component is analogous to equations (26)and  
(30) and can be written in the following equivalent forms30 

- 
where n' = N/V1 and where V '  is given by equation ( 7 4 ) .  For DAo = 3 equations 
(140)  through (144)  become equations (26) through (30). The TO term of equation 
(134) is given by 

Equation (140)  arises from the fact that 

where E;, = zero-temperature value of 8; given by equat+on - (72). Equation 
'I 

(145 )  reduces to equation (32) for the case E;, = 1 , D:, = 1 , D,,= 3 and E;o = 0 . 



I n  these equat ions t h e  zero-temperature p re s su res  and bulk moduli are given by 

- 
p l  = v l d ~ ' / d ~ l -  E l  F~~ = - V l d ~ a l / d V '  - ral 

0 0 0 0 0 0 (147 )  

- 2 2 K *  = - v 1 d F l / d v r  = 2v 'dEi /dv '  + V1 d E ' / ~ v ' ~  
0 0 0 0 (148) 

2 2 h' = - v ' ~ F ~ ' / ~ v '  = 2 ~ ' d p ' / d v '  + V1 d dE1/dvl 2 
0 0 0 (149) 

Case B. Incoherent Energy and Incoherent S p a c e t i ~ e .  

For incoherent energy and incoherent spacetime, corresponding t o  a very slow 
thermodynamic process  i n  ord inary  mat te r ,  BU = 0 ,  B p  = 0, BV = 0 and V1 = V  , 
and t h e  t r a c e  equat ion is  w r i t t e n  a s  

o r  equ iva l en t ly  a s  

All of t h e  equat ions ( 1 4 0 )  through ( 1 4 4 )  are v a l i d  for this case  i f  the replace- 
ment V1 + V i s  made and if the  bars are removed. 

Case C. P a r t i a l l y  Coherent Energy i n  Coherent Spacetime. 

T h i s  case corresponds t o  a moderately f a s t  thermodynamic process  taking 
place i n  t h e  superconducting state  of a high-Tc superconductor.  For  coherent 
spacetime ic fol lows from equat ion (74)  and the  condi t ions  BW = 1~12 and 
V = cons tan t  t h a t  V '  = VOV . Then from equat lon (73) i t  follows t h a t  

o r  equiva len t ly  as 

where 

The p o s s i b i l i t y  t h a t  t h e  unrenormalized func t ions  ficSa , Fcsa and ~t~~ i n  equa- 
t i o n s  (152) a r e  s t r u c t u r a l l y  induced complex numbersisnowconsidered.  Equation 
(152B) is  obtained from equat ion (152A) by d iv id ing  through by VBV , where the  
r e s u l t i n g  energy d e n s i t i e s  a r e  given by equat ion ( 8 3 ) ,  and wherethegaugepara-  
meters  Fis and p;S a r e  given by equat ions (84) and (85) r e spec t ive ly .  The 
s o l u t i o n  of equation ( 1 5 2 B )  begins with t h e  determinat ion of t h e  gauge para- 
meters.  

-CS 
The expression f o r  EiS is given i n  equat ion (85). The c a l c u l a t i o n  of Bp 



begins by using t h e  chain r u l e  f o r  de r iva t ives  as fol lows 

-CS - 
The d e r i v a t i v e  dT/dBV i n  equat ion (154) i s  obtained from t h e  condi t ion  U - 
constant  as fol lows 

so t h a t  

so t h a t  from equat ion (85) it fol lows t h a t  

Equation (157) can be r e w r i t t e n  a s  

where the GrUneisen parameter i s  given by 

where tiCS and ECS are r e l a t e d  by equat ion (83). I f  equat ion (116) i s  w r i t t e n  i n  
t h e  form 

then equat ion (158) g ives  

where 

-CS qs = - ev(ap /aeVIT 
-CS and this gives t h e  des i r ed  value of Bp . 

The v a l u e  of i s  obtained from equat ion (84) t o  be 

-CS B E  = T/ (~0,)  [E;zV + (aEcs/aO ) (dBV/dT) -cs I v T P ell 

where the  coherent space h e a t  capac i ty  a t  constant  VBV i s  given by 



From the condition @Cs9V = constant it follows that 

and 

so that 

-CS which is the required form of BE . 
Consider now the case of a solid and low temperature quantum liquid state 

equation of the form 

Then the T = 0 component of equation (161) is given by 

-CS = 
B ~ o  (1 4- yzs)Fzs - $' 

and the energy density components by 

Placing equation (168) into equation (160) gives the zero-temperature pressure 
and the thermal pressure respectively as 

The zero-temperature bulk modulus for coherent space is given by 

The corresponding unrenormalized values of the zero-temperature pressure and 
bulk modulus are given respectively by 

-csa 2 2 csa 2 KEsa = 2BVdEo /dey + BVd E0 /dBV 



From equat ions (159) and (168) t h e  Grlineisen parameter is obtained as 

YCS= P ~ ~ / E ; ~  + . . . (178) 

and therefore 

Analogous t o  equat ions (26) and (140) t h e  T = 0 component of equat ions (86) o r  
(152) is  

Equation (180) i s  equivalent  t o  the following forms 

The T' component of equat ions (86) o r  (152) is  obtained f i r s t  by combining 
equat ions (167) and (168) t o  g e C  

Correspondingly, t he  value Bgs can be obtained from equat ions (161) and (168) 
t o  give 

-CS . -C S 
where BpO i s  given by equat ion (170). From t h e  d e f i n i t i o n  of yo given i n  equa- 
t i o n  ( 1 7 8 ) ,  and using equat ion (174) i t  i s  easy t o  show that 

F i n a l l y  combining equat ion (185) and (186) g ives  

-CS = -cs 
B~ @PO 

+ cCSe ova d;CS/dev~u 

Combining equat ions (86), (184) and (187) gives t he  T" component of equation 
(152) a s  



From equat ions (174) and (179) it fo l lows  that 

Equation (188) i s  similar t o  equat ion (32) which descr ibes  incoherent spacetime. 
I n  equat ion (188) PCS and FcSa are given by coherent space equations (173) and 

n o 
(176) while  gzS and z:Sa a r e  given by equat ions (175) and (177), whereas i n  equa- 

t i o n  (32) Fo and P: a r e  given by t h e  incoherent  space equat ions (23) and (24) 

while  fo  and K: a r e  given by equat ion (31).  Likewise, equt t ion  (188) i s  s i m i l a r  
t o  equat ion (145) except t h a t  i n  equat ion (145) FA, G ,  Pg and e' a r e  given by 
equat ions (147) through (149) . 

D .  Coherent Energy and Coherent Spacetime. 

For t h i s  case of an u l t r a f a s t  thermodynamic process  o c c u r r i n g i n t h e s u p e r -  
conducting s t a t e  of a high-T, superconductor,  t h e  v a r i a t i o n  of t h e  i n t e r n a l  en- 
ergy and s p a t i a l  volume i s  given i n  equat ion (122) and the  r e l a t i v i s t i c  t r a c e  
i s  obtained from equations (73) and (122) t o  be 

o r  equiva len t ly  as 

w i t h  - utC = constant  and V = cons tan t .  Thus the problem here i s  t o  determine 
- tc  6:' and Bp . 

For s o l i d s  and low temperature quantum l i q u i d s  t he  pressure,  i n t e r n a l  en- 
ergy, Griineisen parameter and average energy dens l ty  a r e  given f o r  t he  case  a t  
hand by 

- t c  0 ztC = PC + ED T - - ~ t c a  tca o 
0 0 

+ ED T (193) 

where 



a a a grca tca j B U  = U  e ~ t c a  = UtcaejeUo - tca - UtcaejBUo 
0 0 uu - 0 

For t o t a l  coherence equat ions (116) and (132) a r e  w r i t t e n  i n  t h e  form 

1/vaitc/aev = j ~ t C e  ae / aev  = T ~ F " / ~ T  - PtC v U (200) 

For T = 0 equat ions (191), (192) and (200 give t h e  zero-temperature va lue  of 
t h e  t o t a l l y  coherent pressure  as 

where t h e  phase angle  of t h e  internal energy i s  independent of temperature i n  
t h i s  case. The thermal component of the  pressure  i s  given by equat ions (191), 
(192) and (200) as 

- t c  - tca  
The Gruneisen parameters yo and yo a r e  obtained from equat ions (193) and 
(203) t o  be 

- t c  - t c  - t c  
Yo 

= I /  ( U  - 1) 9 /U dUu /dev = l /  (0 - 1) j 0,d0uo/df3, v 0 
(204) 

- tca  -tca - tca  
Yo 

= 1 ( - 1 9 v / ~ u  dUD /dBV = 11 (a - 1) j 0Vd9~o/d0v (205) 

Therefore f o r  t o t a l  coherence of spacetime and thermodynamic func t ions  

- t c  
The c a l c u l a t i o n  of BE i s  obtained from equat ion (101) t o  be 

where t h e  t o t a l l y  coherent hea t  capac i ty  f o r  constant  V0 is  given by v 
- t c  
'v ev = j i t C a e , / a ~  (207) 

and 

T / ( V B  v )etc vev = j ~ t C ~ a O U / a ~  (208) 

by equat ion (92 , ) .  Then in analogy to equat ion (167) 

B~ 
- tC ( T ~ P ' ~ ' / ~ T )  ( ~ a j ? / a ~  - ptC) / [F" - tC = TI (veV)~;EV - Y + e,(ai;"/ae I 

OV v T 
(209) 



Using the definition in equation (102) and the expressionfortheGrIineisen 
parameter in equation (193) allows ztC to be calculated as follows 

P 

where now 

-tc gC = - ev(ap /aeylT 

The zero-temperature version of equation (210) is 

with the zero-temperature bulk modulus given by 

For total coherence the zero-temperature bulk modulus can be rewritten using 
equations (201), (202) and (213) as 

From equation (93) and remembering that V = constant for the case of total co- 
herence it follows that 

Combining equations (214), (215) and (216) gives 

Combining equations (191) through (193) and equation (210) gives 

where equation (204) can be used to evaluate the derivative in equation (217C). 

The zero-temperature trace equation for total coherence is obtained from 
equation (190) to be 



Combining equations (201) , (2  17A) and (218) gives 

The T' component of equat ion (190) f o r  t o t a l  coherence i s  

t c a  - tca  -tc-tca-teal ( ~ ; c a  - f t c a )  
= Eo (1 f aDt0 + OD y 

t o  0 Po 0 

- t c  - t ca  -tca 
where Po and Po a r e  given by equarions (201) and (202), and gc and K, a r e  
given by equat ions (214) and (215). Equation (220) can be solved by n o t i n g t h a t  
from equat ions (204) and (205) i t  fol lows t h a t  

I n  t h i s  way the  zero-temperature -and thermal po r t ions  of t he  i n t e r n a l  energy 
a r e  ca l cu la t ed  f o r  coherent thermodynamics and coherent spacetime. 

The values of t h e  i n t e r n a l  energy, Griineisen parameter, anddimensions de- 
pend on t h e  type of broken symmetry e x h i b i t e d b y t h e  thermodynamic func t ionsand 

- t c  - t c  - t c  -cs, ;cs, c;s by t h e  spacetime. Thus PC, y , Dt and Ds a r e  d i f f e r e n t  from U 
-CS and D, , and from U' , ' , E; and 6; . Each s e t  of func t ions  is determined from i t s  

own form of r e l a t i v i s t i c  t r a c e  equat ion combined wi th  the equat ions of t i m e  and 
dimensions. The case  of coherent thermodynamics i n  an  incoherent space, corres-  
ponding t o  an u l t r a f a s t  process  i n  ord inary  ma t t e r ,  can be  obtained from t h e  re- 
s u l t s o f  Case D by making the  s u b s t i t u t i o n  VBV+V i n  equat ions (190)through (222) .  

4. QUANTUM THERMODYM~NICS. I n  t h i s  s e c t i o n  r e l a t i v i s t i c  thermodynamic 
eigenvalue equat ions a r e  developed t h a t  descr ibe  the  d i s c r e t e  and continuous 
spec t r a  o f  s t a t e s  of a thermodynamic system. This quantum s t r u c t u r e  can e x i s t  
f o r  t h e  cases  where the  thermodynamic func t ions  a r e  e i t h e r  incoherent  o r  coher- 
e n t  and when t h e  spacetime is  e i t h e r  coherent o r  incoherent .  The eigenvalue 
equat ions can be w r i t t e n  f o r  e i t h e r  t h e  i n t e r n a l  energy, energy d e n s i t y o r  pres-  
su re .  The quantum s t a t e s  a r e  s e l f  a c t i v a t e d  i n  t h e  sense t h a t  the  source terms 
i n  t he  r i g h t  hand s i d e s  of t h e  r e l a t i v i s t i c  energy t r a c e  equat ions (16), (78), 
(86) and (97) are assumed t o  be propor t iona l  t o  the corresponding renormalized 
q u a n t i t i e s .  Macroscopic quantum systems with r e a l  s t a t e  equat ionsareexpec ted  
t o  be described by eigenvalue equat ions of t h i s  type. 

Case A. P a r ~ i a l l y  Coherent Energy and P a r t i a l l y  Coherent Spacetime. 

The eigenvalue equat ion corresponding t o  t h e  t r a c e  equat ion ( 7 8 ) i s w r i t -  
t e n  f o r  a compari t ively f a s t  thermodynamic process  i n  the normal s t a t e  of a 



high-T, superconductor as 

where z' = E'/V' and E k  and are given by equations (71) and (72) respectively. 
Equation (224) may be generalized with the addition of an external potential 
yielding 

Equation (225) yields eigenfunctio:~ for disc~ete or continuous eigenvalues ;' . 
For a noninteracting system w i ~ h  BE = 0 and Pp = 0 it follows fromequation (224) 
that i' = 1 , while i' = 1 + gE for a noninteracting system in an external po- 
tent ial . 

The zero-temperature eigenvalue equation corresponding to equation (225) 
is written as 

where FA and are given by equations (147) and (148) respectively. Equation 
(226) is equivalent to any of the following eigenvalue equations 

The general expressions for the space fnd time dimensions are given in equation 
(135). For a three dimensional space DAo = 3 and E i o  = 0 and equations (226) 
through (231) become more simple. For example, equation (229) becomes 

- 
3n'2d2~~/dn'2 - 3 ( 1  + yi)n1dE;/dn + (3;; + 4 - u' + Bi)EA = 0 (232) 

as the zero-temperature energy eigenvalue equation. 

Q The T component of the eigenvalue equation (225) is easily obtainedfrom 
equation (145) to be 



where F; and g~ are given - by equat ions - (147) - and (148) r e spec t ive ly .  For a 
3 I- 1 dimensional space = 3 ,Die = l,D&, = 0 [D:~ does noc e n t e r  t h e  
t r a c e  equat ion (78) o r  t h e  eigenvalue equat ion (225) i n  t h e  T' term and so i t  
it  does not  appear i n  equat ion (233)] ,  and f o r  this case equat ion (233)becomes 

It should be noted t h a t  by the  d e f i n i t i o n  of an eigenvalue, G 1  i s  simply a 
number and not  a temperature and dens i ty  dependent thermodynamic funct ion.  Also 
it is  assumed t h a t  the ex te rna l  p o t e n t i a l  Gj i s  not  a func t ion  of temperature 
and dens i ty .  

Case B. P a r t i a l l y  Coherent Energy and Incoherent Spacetime. 

For t h i s  case rhe eigenvalue equat ions corresponding t o  t h e  t r a c e  equa- 
t i o n  (16) can be obtained from t h e  genera l  case  equat ions (223) through (234) 
by tak ing  V'  = V (corresponding t o  eV = 0) and e l imina t ing  t h e  primes f r o m a l l  
q u a n t i t i e s .  Th i scase  cor responds to  a compari t ively f a s t  thermodynamic process  
i n  an  ordinary ma te r i a l .  

Case C .  P a r t i a l l y  Coherent Energy and Coherent Spacetime. 

For t h i s  case  t h e  t r a c e  equat ion (152) g ives  the following eigenvalue 
equat ion f o r  t h e  superconducting s t a t e  of high-T, m a t e r i a l s  

where f o r  gene ra l i t y  an ex te rna l  p o t e n t i a l  term i s  added. In equation (235) 
V = cons tan t .  Equation (235) can be r ewr i t t en  a s  

-CS -CS 
where FS , BE and Bp a r e  given by equat ions (83) through (85) respec t ive ly .  
For s o l i d s  and low temperature quantum l i q u i d s  t he  ze-KO-temperature form of 
equat ion (236) is given by 

where 5:' and Cs are given by equat ions (173) and (175) r e spec t ive ly .  Equa- 
t i o n  (237) can be w r i t t e n  i n  t he  fol lowing equivalent  forms 



where 5 = N/(VBV) and r:S B:s/ '(~~V) . 
The TO component of the  eigenvalue equat ion (236) is  w r i t t e n  a s  

Equations (235) through (243) s impl i fy  fo r  the case  of 3 + 1 spacetime forwhich  

-" = 1 , ficS = 3 and cCS = 0 . The e x t e r n a l  p o t e n t i a l  is  assumed t o  be indepen- D t o  S 0 $6 

dent  of OV and T . 
Case D.  'Coherent Energy and Coherent Spacetime. 

The eigenvalue equat ions f o r  t h i s  case a r e  e a s i l y  obta inablef romequat ions  
(219) and (220) which g ive  immediately f o r  an  u l t r a f a s t  process i n  t h e  super- 
conducting s t a t e  of a high-Tc superconductor 

- t c  
where t o  be completely genera l  a p o t e n t i a l  t e r m  has been added, and where Po , 
gEC , y$C and EkC are given by equat ions (201), (214) ,  (204) and (212) respec- 
t i v e l y .  The ex te rna l  p o t e n t i a l  is  taken t o  be independent of €Iv and T .  

5. QUANTUM THEORY OF TIME AND DIMENSION. Renormalization group e q u a t i o n s  
f o r  time and dimension have been presented i n  Sect ion -1. Now i n  t h i s  section a 
s e t  of f i r s t  o rder  Dirac- l ike d i f f e r e n t i a l  e igenvalue equat ions f o r  time and 
dimension are developed which may desc r ibe  t h e  d i s c r e t e  and continuous s t a t e s o f  
t i m e  and dimension i n  bulk  mat te r .  These equat ions desc r ibe  t h e  timeanddimen- 
s i o n  s t r u c t u r e  of energy and pressure .  The quant ized time ( ra te) ,  space dimen- 
s ion ,  and time dimension equat ions determine the e f f e c t s  of r e a l  state equat ions 
on the  quantized r a t e s  and quant ized geometr ical  structureof chemicalandnuclear  



reaction processes that occur in bulk matter. 

Case A. Partially Coherent Spacetime, Dimension and Energy, 

This case corresponds to the normal state of a high-T, compound. Follow- 
ing the same procedure as in Section 4 to quantize the energy trace equation, 
the source terms in the right hand sides of equations (78) through (81) are 
assumed to be self actuated fields and the corresponding eigenvalue equations 
are written along with the energy eigenvalue equation (224) as 

- 1 - 1 - 1 
For a non-interacting system BE = 0 .  Bp = 0 ,  6' = 1 ,  z 1  = 1 ,  X = 1 and 8' = 1 . 
Equations (246) through (249) are four simultaneous eigenvalue equationsforthe 
internal energy density, time, time dimension and space dimension. Coupled 
eigenvalue equations occur in many physical situations and are generally diffi- 
cult to solve.20 Equations (246) through (249) can be generalized to include 
external potentials and are written in the form 

where ti, $ , ii;)t and ij;), are dimensionless external potentials. The case of 
incoherent space can be regained from equations (246) through (253) by the 
substitution W' + W and dropping the primes. The quantized time equation can 
easily be cast into a quantized rate equation by taking the rate % t-1 or more 
generally as rate = d~/dt. 

The eigenvalue equations (250) through (253) determine the internal energy, 
- (v ) ,  $4 time, time dimension and space dimension of matter. The eigenva-lues IJ , 

T(') and 8'') and gigenfunctions E(') , f(v) , 6iv) and 5:') are associated with 
a parameter v that can be-discrete or continuous. Thus the internal energy, 
time, time dimension and space dimension can have a discrete (line) or continu- 
ous spectrum. It is possible to have various combinations of discrete and con- 
tinuous values for these quantities. For instance at ordinary temperatures and 
densities D; 'I. 1 and DL Q 3 , while time and energy are not constants and appear 
as continuous functions at macroscopic dimensions. This may nor be the case at 
high temperatures and densities where time and bulk matter energy may have only 
a limited range of values (Section 6). At these high temperatures and densities 



D{ and D; may be continuous funct ions of temperature and dens i ty .16  The Dirac 
and Schrlldinger equat ions descr ibe  microscopic systems s u c h a s  molecules, atoms, 
atomic n u c l e i  and t h e  fundamental p a r t i c l e s ,  The f i r s t  o rder  d i f f e r e n t i a l  
equat ions (250) through (253) a r e  t he  bulk matter  analogs of t h e  Dirac equa- 
t i o n .  

The eigenvalue equat ions (250) through (253) can be r ewr i t t en  i n  terms of 
temperature and p a r t i c l e  number dens i ty  as independent v a r i a b l e s  by wr i t ing16 

- af l / aF1  = e l a f l / a n l  - F 1 a t l / a ~  a t l / a E 1  = i i l a t l / a . r  - g l a f l / a n l  (254) 

a ~ ; / a F *  = Z1a61/anT - f1a6 ; / a~  
t 

a5;/aE1 = E 1 a E ; / a ~  - i laE;/anl (255) 

ao1/aF1 s = ilaii:/anl - i l a E ; / a ~  a E 1 / a E 1  = G 1 a 6 ; / a ~  - i1a6;/an1 (256) 
. , 

S 

where 

- 
e l  = 1/51  a E 1 / a ~  

e 
F1  = l / E 1  aE1/anl e (257) 

- 
g 1  = 115; a F l / a ~  E1 = 116; aPYanl (258) 

5' = aP1/anl a e l / a ~  - a F 1 / a ~  aE1/anl I 

e (259) 

and where 

Then t h e  eigenvalue equat ions (250) through (253) can be m i t t e n  a s  

(1 - 1 )  ( 1  + G I B ~ )  - E ~ J I  + B;E' = 0 
t E  s P (262) 

(1 - ) - (9; - i 1 9 . ; l ) a f ' / a ~  + ( - G ) / n  + r5;5' = 0 (263) 

(1 - r1)a; + (,; - I l i ; )af j ; /a~ - ( ;  - a / a l  + B1 ~t E 1  t = o (264) 
- 

(1 - Zl)6: + (q; - ~ v ~ ; ) a 6 ; / a ~  - ( - s ' ; ' )a6 ' /an1  + ' = 0 
D s D s  s 

(265) 
* 

In these equat ions n' = N / V i  where V' i s  given by equat ion ( 7 4 ) .  

Case B.  Coherent Spacetime and Dimension and P a r t i a l l y  Coherent Energy. 

This  i s  the  case  of a thermodynamic process i n  t h e  superconducting s t a t e  
of a high-Tc compound. The eigeflvalue equat ions f o r  p a r t i a l l y  coherent energy 
and coherent spacetime and coherent dimensions can be obtained from equat ions 
(86) through (89) wi th  added ex te rna l  p o t e n t i a l  terms t o  be 



C S CS where the magnitudes t , D:' and Ds = constants, and where zcS , B E S  and Eis 
are given by equations (83) through (85) respectively. 

By introducing rhe parameter 5 = N/(VBV) = particle number density for co- 
herent space, and using the relationships 

-CS aet/aFcs = e aet/ag - fCSaet/a~ ae t /aECS - iiCSae,/a~ - icsaet/ag (270) 

-CS -CS -CS -Cs = e aeD,/ag - f aeDt/aT aeDr/azcS = h aeDt/aT - EcsaeDr/ac (271) aeDt/aP 

-cS = ZCSaeDs/ag - iCSaeDs/ar' aeDs/aEcs = EC8aeDsla~ - pCSaeDa/a~ (272) aeDs/aP 

where 

ZCS = 1/5zS a F S / a ~  F C S  = i / E ~ s  aECS/a< (273) 

and introducing 

-CS -cs-CS-CS -CS-CS-CS -CS -CS-CS-CS 
q2 = h Dt B E  + f Ds Bp q,, = h Dt BE 

allows the eigenvalue equations (266) through (269) to be rewritten as 

-CS-CS -cs-CS (1 - iCS) (ECS + Dt B E  ) - Ds Bp + i j y ~ ~ ~  = 0 (278) 

Instead of the variable 5 = n/(VBv) it is possible to use the independent.vari- 
able BV directly by making the replacement 5 + 0~ in equations (270) through 
(281) . 

Case C. Coherent Spacetime, Dimensions and Energy. 

This corresponds to an ultrafast thermodynamic process in the supercon- 



ducting state of a high-Tc compound. For coherent energy as well as coherent 
spacetime and coherent dimensions, the appropriate eigenvalue equations are 
obtained from equations (97) through (100) with added external potentials as 
follows 

where the magnitudes utC , ttc , , D : ~  and V = constants, and where E~~ and 
-tc 
B are given by equations (92), (101) and (102) respectfvely. Note that 
are not coherent quantities as can be seen from equation (93). 

From the chain rule for derivatives it is possible to replace the indepen- 
dent variables EtC and FtC by the variables 0 and T as follows v 

aet/a~ = aet/a~tc a~~'/a~ + aet/a~tC a~~'/a~ (286) 

aet/aev = aet/aftc aTC/aev + aet/aErc a~"/ae, (287) 

with similar equations for the derivatives of eDt and BDs . Then the following 
relations can be derived 

where 

-tc e = i/5ZC a~~'/a~ = 1/5ZC a~~'/ae, (291) . 

Equation (93) gives the following derivatives of the energy density 
. . 

a~"/a~ = j5tCaeu/a~ a~'~/ae, = j~~~ae,/ae, - ~ ~ ~ / e ,  (2948) 

and the following derivatives of the pressure 

T~P~'/~T = j~tCevae,/aev + P~~ 



Introducing the  q u a n t i t i e s  

l e t s  the  eigenvalue equat ions (282) through (285) be wr i t r en  as 

- tc- tc  - tc- tc  -tc-tc - (1 - iitC) ( r t c  + or B E  ) - Ds Bp + W E  E - 0 (297) 

Equations (282) through (285) o r  equat ions  (297) through (300) are t h e  macro- 
scopic quantum eigenvalue equat ions f o r  coherent bulk matter  i n  coherent space- 
t i m e  . 

Equations (282) through (285) o r  (297) through (300) a r e  coupled nonl inear  
complex number eigenvalue equat ions  which are i n  general  d i f f i c u l t  t o  so lve .  A 
simpler set of equat ions can be  obtained by raking 

-tc-tC - 
j D t  BE /ztC = cI = cons tan t  

- tc- tc  - t c  - 
j D s  BP /P = c = cons tan t  2 (302) 

which al lows equat ions (282) through (285) t o  be wr i t t en  a s  

-tc - -tc -tc-tc 
(1 - e )(,I - J S , ) E ~ ~  + j c Z P  + w E  E = o (303) 

where now equat ions (304) through (306) a r e  l i n e a r  d i f f e r e n t i a l  equat ions i n  
Bt  , 0~~ and 0~~ . Al te rna t ive ly  it i s  p o s s i b l e  t o  start wi th  equat ions (297) 
through (300) and write 



where the cons tan ts  c3 through cg are given by 

- tc  - t c  - t c  - t c  where q p  ,qD , s 2  and s~ a r e  given by equat ions  (295) and (296) r e spec t ive ly .  
No s i m p l i f i c a t i o n  of t h e  t r a c e  equat ion (307) is  obtained by using this a l t e r -  
n a t i v e  procedure, bu t  equat ions (308) through (310) are now l i n e a r  d i f f e r e n t i a l  
equat ions.  

6.  SOLUTION OF THE TIME AND DIMENSION EIGENVALUE EQUATIONS. It i s  diffi- 
c u l t  t o  obta in  a genera l  so lu t ion  for t h e  set of energy, t ime, time dimension 
and space dimension eigenvalue equat ions (250) throu  h (253) because they are 
coupled nonl inear  d i f f e r e n t i a l  e igenvalue equat ions  ." Theref o r e  t he  o r i g i n a l  
set of equat ions  are no t  solved i n  this paper.  In s t ead ,  !he coupled equat ions 
a r e  decoupled by tak ing  constant  va lues  6; = 6& and fi; = Eik f o r  t h e  time and 
space dimensions when they appear a s  c o e f f i c i e n t s  i n  equat ions (250) through 
(253) a s  fol lows 

where E 1  = U'/V' and V' is given by equat ion (74) .  Within t h i s  approximation 
equat ions (315) through (317) a t e  l i n e a r  d i f f e r e n t i a l  equat ions,  however, equa- 

, t i o n  (314) is  s t i l l  fundamentally nonl inear .  The s o l u t i o n s  t o  the ~pproximate 
(314) through (317) a r e  reasonable only £07 va lues  5; ?. Etk and 
and any s i g n i f i c a n t  depar ture  of E; and Es from these  values r equ i r e s  

of t he  non+inear coupled equat ions (250) through (253). For a 
non in t e rac t ing  system E E  = 0 and E; = 0 and 

The s o l u t i o n  t o  t h e  energy eigenvalue equat ion (314) was consideredin- .Sect ion&. 

I By t h e  technique of separa t ion  of v a r i a b l e s  t h e  s o l u t i o n s  t o  t he  decoupled 

I 
equat ions (315) through (317) with it = 0 ,  ht = 0 and bs = 0 a r e  r e spec t ive ly  



where 

- 
F 1  = E t / [ ( l  - G1)6;kl G' = G1/6Ak 

- 
iil = F 1 / [ ( l  - x1)5;kl I' = G1/5ik 

- 
J' = ? ' / [ ( I  - X1)6;,] 1:' = { ' / / a : ,  

-b -b -b - d - - - 
where t ,Dt and Ds = cons tan ts ,  and where t h e  cons tan ts  K '  , E '  , r '  , 0' , v '  and 
6' a r e  r e l a t e d  by 

The r e l a t i o n s  i n  equat ions (317H) through (3175) fol low from t h e  technique of 
t he  separa t ion  of v a r i a b l e s  which, f o r  t h e  time equat ion (315), involves wr i t -  
ing the  s o l u t i o n  a s  :' = $ ( E 1 > S ( F ' )  and getting 

which obviously y i e l d s  equat ion (317B). Note t h a t  equat ions (317H) through 
(3175) a r e  equiva len t  to 

K '  + W '  - 1 = 0' 
R 

K t  + W '  = 0 '  
R R I I 1  ( 3 2 0 )  

E '  + h '  - 1 = V '  E '  + 1; = V '  
R R R I I (321) 

T' + 6 4  - 1 = q i  
R 

r '  + 6; .' TI; I (322) 

Case A. Incoherent Energy and P a r t i a l  Coherence of Spacetime and Dimension. 

This  case r e f e r s  t o  a slow thermodynamic process  i n  t he  normal s t a t e  of a 
high-T, superconductor.  For th i s  case the  ene-rgy dens i ty  and constant  dimen- 
s i o n  c o e f f i c i e n t s  a r e  taken a s  r e a l  numbers and equat ions (314) through (317) 
are w r i t t e n  as 



The solutions to equations (323) through (326) for zero external potentials are 

- -b 
t ' = t exp (P"ldE1/~i + c"/d~ '113;) (327) 

5; = 6; ex, (-a"ldE'/~; - i " j d ~  '16;) (328) 

where E1 = U'/V1 , and where 

Case A also describes partially coherent energy. 

The constants that appear in equations (317H) through (3175) can be writ- 
ten as 

- - - 
K' = K: + j ~ ;  E '  = E '  + j ~ ;  R T' = T' R +- jr; (330) - - 
~1 = w 1  + jut A '  = A; + jA' 3' = 6 '  + jsl 

R I I R I (331) 
- - - 
0' = + jo; v' = v i  + jv; TI' = I-I; + ju; (332) 

Then from equations (3298) through (329C) the following relations are calculated 

- - - 
( 1  - I  = a '  + j b  1 - )  = c + j .cl/(l --8') = e'  + j f '  (333) 

where 



With these relations, the real and imaginary parts of the solutions in equations 
(327) through (329) can be obtained. 

The zero-potential solutions in equations (327) through (329) can then be 
written as 

- -b -b - c '  = -b t exp (at + j 6 ) 6; = D exp (Q + j oDt) D: = D~ exp (aDs + j eDs) (340) 
t t Dt s 

where 1 

For a limited region in energy-pressure space where l3k and B; can be taken as 
approximately constant the solutions in equations (341) through (346) can be 
written as 

These equations are based on simplifying assumptions but they have heuristic 
value. 

The solutions presented in equation (340) and within the approximations 
given in equations (347) through (352) are valid only within a limited range of 
density and temperature where 6: and 6; are constants. Within this approxima- 
tion simple algebra shows that the real parts of the solution given in equation 
(340) can always be written as 



where v c ,  q , ,  tc , u c ,  T~ and pc = constants. These solutions suggest the possi- 
bility that time and dimension can exhibit structure within definite ranges of 
energy density and ressure. The solutions may have applications to quantum 
electronic devices. Y 1 

Consider now the possibility of box structures in energy-pressure space 
wherein time and dimension are localized in structures with rigid walls where 
the time and dimensions vanish. Suppose that time vanishes at two boundaries 
in energy space E i  and Ei and at two boundaries in pressur? space P; and P; . 
Similarly, the time dimension vanishes at two boundaries E3 and E l  in energy 
density space and at two boundaries P: and P; in pressure space. Finally, the 
space dimension vanishes at two boundaries in energy density space denoted by 
E!j and and at two boundaries P; and P: in pressure space. Then it follows 
from equations (353) through ( 3 5 5 )  that 

Combining equations (356) through (359) gives the following eigenvalues 

The eigenfunctions for the time box, time dimension box and space dimension box 
can then be obtained from equations (353) through (355) and equations ( 3 6 0 )  
through (362) to be 

D L ~  = C exp mDs sin [nn (E' - E;) / (Ei - E;) ] sin[mn (P ' - P;) / (P: - P;) ] nm (365) 

The limits of the energy-pressure box may coincide for time, time dimension and 



space dimension i n  which'case E; = E; = E L ,  P; = P; = p i  , E; = E; = E$ , and 
Pi = Pi = P; . 

Within Case A of incoherent  energy and p a r t i a l  coherence of spacetime and 
dimension t h e r e  a r e  two s p e c i a l  types of so lu t ions :  type 1, a purely s inuso ida l  
so lu t ion ,  and type  2 ,  a r e a l  exponent ial  so lu t ion .  These two typesof  s o l u t i o n s  
will now be considered.  

Type 1. S inusoida l  Solution. 

For t h i s  type,  Qt = O , Q I D ~  = 0 and 9~~ = 0 i n  equat ion (340),and the re fo re  
from equat ions (3421, (344), (346), (317H) through (317J)and (334)through (339) 
it fol lows t h a t  

For t h i s  type of s o l u t i o n  b '  = 0 ,  L' = 0 and f' = 0 so t h a t  equat ions (340), 
(347) , (349) and (35 1) g ive  

with 

For cons tan t  va lues  of B; t h e  real  p a r t s  of t h e  s o l u t i o n s  i n  equat ion (369) can 
always be w r i t t e n  a s  

Ds, = c s i n  [Q;/ (D;kB;k) (P l + P c) ] (373) 

For a t i m e  box, t i m e  dimension box and space dimension box locaced i n  p r e s u r e  
space and bounded r e spec t ive ly  by (PI ,P2) , (Pg ,Pq) and (P5 ,P6) i t  follows 
from equat ions (360) through (362) and (371) through (373) t h a t  e igenfunct ions 
f o r  a purely s inuso ida l  s t a t e  a r e  

n;: = B~ sin [mrr (P - P;) / (P; - P;) 1 



Type 2. Real Exponential Solu t ions .  

For t h i s  type of so lu t ion ,  Bt = 0 ,  BDt = 0 and BD, = 0 i n  equation (340). 
Then equat ions (341) through (346) give 

b 1  = 0 L1 = 0 f 1  = 0 a; = 0 v 1  = 0 t$ = 0 (376A) 
I 

From equat ions (334) through (339) and equat ions (320) through (322) i t  fol lows 
t h a t  t h r e e  p o s s i b i l i t i e s  exist with in  a  Type 2 so lu t ion .  

P o s s i b i l i t y  1. B t  = 0 ,  BDt = O , B D s  = 0 and the  following condit ions 

= 0 = 1 U' = 0 = - W '  a '  P - ~ 1 / w 1  = 1 R R R I I I I (377) 

E '  = 0 A '  = 1 v 1  = 0 E l  = - ~1 = - E ~ / x '  = 1 
R R R I I I (378) 

r 1  = 0 6; = 1 0; = 0 'Cl = - ; = - ~ 1 / 6 '  = 1  
R I I I (379) 

Then equat ions ( 3 4 2 ) ,  (344) and (346) g ive  

P o s s i b i l i t y  2. 9 = 0 ,  BDt = O , O D s  = 0 and t he  following condit ions 
t 

K 1  = 0 
R 

w 1  = 0 
I 0; = u 1  R 

- 1 K '  = 0 a' = 0 (383) 
I 

E l  = 0 R 
A; = 0 V; = A;, - 1 E; = 0 C' = 0 ( 3 8 4 )  

= 0 s; = 0 qE; = 8'  - 1 ' C 1  = 0 
R R I 

e' = 0 (385) 

Then from equat ions (342), (344) and (346) it follows t h a t  

- P o s s i b i l i t y  3 .  B t  - 0 ,  BDt = 0 ,  ODs = 0 and the  following condi t ions  

w 1  = 0 I 
a '  = K; + w; - 1 

R 
K '  = 0 
I 

a '  = K;/(I - $1 (389) 

A; = 0 v 1  = € 1  + X1; - 1 E; = 0 c 1  = €;(/(I - X i )  (390) 
R R 

6; = 0 r$ = r 1  + 6 i  - 1 r; = 0 = $1 (1 - 6;) (391) R 

and equat ions (342), (344) and (346) g ive  



where 

The s inuso ida l  and exponent ial  s o l u t i o n s  of t h i s  s ec t ion  may have appl ica-  
t i o n  t o  quantum junc t ions  such. a s  Jose  hson junc t ions ,  s u p e r l a t t i c e s ,  quantum 
wel l s ,  quantum wires  and quantum d o t s .  ! l I n  t h e s e  e l e c t r o n i c  devices  e l ec t rons  
are trapped i n  reg ions  of space t h a t  a r e  bounded by abrupt changes of energy 
dens i ty  and pressure .  The so lu t ions  may a l s o  have app l i ca t ions  t o  cosmology 
because they can desc r ibe  t h e  dependence of time and dimension on the  average 
energy dens i ty  and pressure  of t he  universe .  

Case B. Incoherent Energy and Coherent Spacetime and Dimension. 

This i s  t h e  case  of a slow thermodynamic process  occurring i n  t h e  supercon- 
duct ing s t a t e  of  a high-T, compound. Consider t h e  decoupled form of equat ions 
(267) through (269) with external  p o t e n t i a l s  s e t  e q u a l  t o  zero 

'CS C S  - C S  C S  
(1 - i C s l ( l  - ~ D ~ ~ B ~  a e t / a ~ C S )  + jDs,B, aet/apCS = o (399) 

c s  -CS -CS 
where E" = uCS/ (VBV) and where cCs , DL , D : ~  , Dtk and D,k = cons tan ts  f o r  t h e  

case of coherent spacetime and dimensions. Note t h a t  E C S  , E i s  and 03' have 
a l ready  been divided out  of equat ions (399) through (401) respec t ive ly .  The 
so lu t ions  t o  equat ions (399) through (401) a r e  obtained i n  an analogous manner 
t o  t h e  so lu t ions  presented i n  equat ions  (317B) through ( 3 1 7 ~ )  with the r e s u l t  
t h a t  



C S  C S  
For constant  values of BE and Bp t h e  so lu t ions  a r e  w r i t t e n  as 

C S  CS 0 CS c's 
@ ~ t  = aDtE lBEk + aDtP /Bpk (406) 

where t h e  cons tan ts  appearing i n  equat ions (402) through (407) a t e  given by 

where t h e  r i g h t  hand s i d e s  of equat ions (408) through (410) must be r e a l  num- 
bers. The solutions given i n  equat ions (402) through (407) can be v e r i f i e d  by 
d i r e c t  s u b s t i t u t i o n  i n t o  equat ions (399) through (401) and taking account of 
t he  r e l a t i o n s h i p  between t h e  eigenvalues and separa t ion  cons tan ts  given i n  
equat ions (317H) through (3L7J) which for t he  case at hand a r e  w r i t t e n  as 

Addit ional  equat ions r e s u l t  from t h e  requirement t h a t  t h e  imaginary p a r t s  of 
t he  r i g h t  hand s i d e s  of equat ions  (408) through (410) must vanish ,  which b r ings  

fjcs t h e  components of the complex number time dimension and space dimension, tk 
and Eg{ r e spec t ive ly ,  i n t o  t h e  r e l a t i o n s h i p  between t h e  eigenvalues and t h e  
separa t ion  cons tan ts .  If t h e  cons tan t  time dimension and space dimension coef- 
f i c i e n t s  t h a t  appear i n  equat ions  (398) through (401) and i n  equat ions (408) 
through (410) a r e  taken t o  be real numbers then t h e  a d d i t i o n a l  equat ions become 

Case B a l s o  descr ibes  p a r t i a l l y  coherent energy. 

Case C ,  Coherent Energy, Coherent: Spacetime and Coherent Dimension. 

T h i s . s i t u a t i o n  a r i s e s  i n  an u l t r a f a s t  thermodynamic process  occurr ing i n  
t h e  superconducting s t a t e  of a high-T, compound. The decoupled equat ions cor- 



responding t o  equat ions (282) through (285) a r e  

-rc  - t c  t c  tc' -tc t c  
(1 - 8 ) ( 1  + jDtkBE a e D s / a ~  - jDsrBp aeDs/aptC + i = o D s (420) 

t c  tC tC -tc - t c  where utC , t , Dt , D, , Dtk and D,k = cons tan ts .  For coherent energy and co- 
herent  spacetime it is always poss ib le  to  w r i t e  

tc 
where BV and T are not  independent because U = constant. The so lu t ions  t o  
equat ions (418) through (420) with the ex te rna l  p o t e n t i a l s  set equal t o  zero 
can be w r i t t e n  as  

where 

and, as before ,  t h e  r i g h t  hand s i d e s  of equat ions (425) through (427) must be 
r e a l  numbers. For a limired region of pressure and energy dens i ty  i n  which @EC 
and ~6~ can be taken t o  be cons tan ts  t h e  s o l u t i o n s  can be w r i t t e n  as 

where t h e  gauge func t ions  a r e  given by equat ions (101) and (102) r e spec t ive ly .  
The s o l u t i o n s  i n  equat ions (422) through (424) and equat ions (428) through (430) 



can be v e r i f i e d  by d i r e c t  s u b s t i t u t i o n  i n t o  equat ions (418) through (420). Also 
from equat ions (317H) through (3175) i t  fol lows t h a t  

The r e a l i t y  of t he  equat ions (425) through (427) g ives  a d d i t i o n a l  equat ions t h a t  
relate t h e  real and imaginary components of t he  eigenvalues and separa t ion  con- 
s t a n t s  t o  t h e  r e a l  and imaginary p a r t s  of t h e  cons tan ts  6:E and t h a t  i n t ro -  
duce t h e  time and space dimensions i n  equat ions (418)  through (420). I f  t h e  
cons tan t  time and space dimension c o e f f i c i e n t s  t ha r  appear i n  equations (417) 
through (420) and i n  equat ions (425) through (427) a r e  assumed t o  be real numbers 
then t h e  r e a l i t y  of equat ions (425) through (427) g ives  the  following r e l a t i o n s  

7 .  SUBSTRUCTURE OF TIME AND DIMENSION. The f i r s t  o rder  d i f f e r e n t i a l e i g e n -  
va lue  equat ions of t ime, t i m e  dimension and space dimension t h a t  were presented 
i n  Sec t ions  5 and 6 a r e  t h e  bu lk  matter  analogs of t h e  s t a t i o n a r y  s t a t e  Dirac 
equat ion of microscopic physics .  This  s ec t ion  genera l izes  t hese  equat ions and 
develops analogs of t he  time dependent Dirac equation. This can be done by 
making t h e  following replacements f o r  t h e  eigenvalues 

i n  a l l  of the eigenvalue equat ions of Sec t ions  5 and 6 ,  where £ = energy dens i ty  
of t h e  p a r t i c l e s  (chronons) t h a t  c o n s t i t u t e  the phys ica l  b a s i s  of t h e  substruc-  
t u r e  of coherent time and coherent dimensions, and y = fundamental cons tan t  hav- 
ing t h e  dimensions energy dens i ty  which f o r  atomic and molecular s t r u c t u r e  must 
be given by 

where h = ~ l a n c k ' s  cons tan t ,  h = h / (21~)  , ag = Bohr r ad ius  and tg = Bohr time, 
where t h e  l a t t e r  two q u a n t i t i e s  are given by16 

where me = e l e c t r o n  mass. Then it . f o l l o w s t h a t  f o r  a tomicandmolecular  s t r u c t u r e  

The cons tan t  y s e t s  t he  s c a l e  of t h e  quantum p a r t i a l  d i f f e r e n t i a l  equations 



derived i n  t h i s  sec t ion .  For i n s t ance ,  a t  t h e  l e v e l  of elementary p a r t i c l e s  

where m = mass of t h e  gauge boson mediating t h e  i n t e r a c t i o n ,  and where 
a, = h/(mc) = Compton wavelength and tc = R/C where R = range of weak i n t e r a c t i o n  
force  o r  range of s t rong  i n t e r a c t i o n  fo rce ,  and c = l i g h t  speed. A t  t h e  l e v e l  of 
quantum g rav i ty  

where a = Planck length  and tp = Planck time. , ' P 

Chronons a r e  t i m e  coherent bosons. For t he  weak i n t e r a c t i o n s  the  bosons 
W' and Z0 i n  a rime coherent s t a t e  a r e  chronons. The gluons a r e  t h e  e i g h t  gauge 
bosons of t h e  s t rong  i n t e r a c t i o n s  and when they occur i n  a coherent time s t a t e  
they can be represented a s  chronons. However, a t  t h e  s c a l e  atomic and molecular 
s t r u c t u r e  t he  chronons genera l ly  a r e  phonons, photonsandelectronpairs. Phonons 
a r e  the  quanta of l a t t i c e  v i b r a t i o n s  i n  s o l i d s ,  while  photons a r e  t h e  gauge bos- 
ons of t h e  electromagnet ic  i n t e r a c t i o n .  The energy dens i ty  of rhe  chronons E 
can always be w r i t t e n  a s  

where n = average chronon number dens i ty  and e = average energy per  chronon. 
This is t o  be d is t inguished  from the  ord inary  matter  energy dens i ty  € , p a r t i c l e  
number dens i ty  n and average energy per  p a r t i c l e  E which a r e  r e l a t e d  by 

It is assumed t h a t  E and E are independent q u a n t i t i e s ,  and t h a t  the time and 
dimension va r i ab l e s  a r e  func t ions  of both types of energy dens i ty .  For high-T, 
superconductors the ordinary  mat te r  energy dens i ty  r e f e r s  t o  t h e  binding energy 
of t h e  c r y s t a l  l a t t i c e .  On t h e  o the r  hand, t h e  average energy per chronon i s  
assoc ia ted  with the  coherent phonons t h a t  represent  t h e  l a t t i c e  v i b r a t i o n s  of a 
high-Tc ma te r i a l  i n  i ts  superconducting s t a t e ,  and w i t h  t he  coherent t i m e  e lec-  
t r o n  p a i r s  t h a t  form bound s t a t e s  due t o  t h e i r  i n t e r a c t i o n  with the  coherent 
time phonons of t h e  l a t t i c e  v ib ra t ions .  The theory of coherent t i m e  photons 
t h a t  a r e  assoc ia ted  with thermal s t a r e s  of high-Tc superconductors has a l r eady  
appeared i n  t h e  l i t e r a t ~ r e . ~ '  These a r e  t he  chronons of blackbody electromag- 
n e t i c  r a d i a t i o n  i n  a coherent time s t a t e .  The coherent spacetime s t a t e  of t h e  
e l ec t rons  t h a t  form Cooper p a i r s  i n  t h e  superconducting s t a t e  of a high-Tc ma- 
t e r i a l  has  i n t e r n a l  phase angles  of t h e  t i m e  and space coordinates  given by 
Ot = n/6 and 0, = r / 3  .16319 For t h e  coherent blackbody r a d i a t i o n  a s soc i a t ed  
with these  e l e c t r o n s  t h e  conservat ion of momentum i n  electron-photon c o l l i s i o n s  
h</c = n i i  gives  t h e  i n t e r n a l  phase a n g l e s o f t h e f r e q u e n c y a s  O v = n / 3 - n / 6 = a / 6  
and the re fo re  t he  i n t e r n a l  phase angles  of s p a c e t h e  f o r  coherent blackbody 

2 2 r a d i a t i o n  a r e  BtR = BrR = - n / 6 .  The spacetime i n t e r n a l  phase angles  f o r  
phonons i n  t h e  superconducting s t a t e  of a high-T, ma te r i a l  a r e  approximately 
the  same a s  those of coherent blackbody photons. 

The quantum equations f o r  time and dimension expressed i n  terms of t h e  



chronon energy density E will now be developed for three cases of interest to 
high-Tc superconductivity. 

Case A. Incoherent Energy and Partial Coherence of Spacetime and Dimension. 

This-case describes a slow thermodynamic process in the normal state of a 
high-Tc superconducting material. From equations (251 )  through (253 )  and equa- 
tion ( 4 3 8 )  it follows that the decoupled substructure dependent equationsoftime. 
time dimension and space dimension are respectively 

In this case both the magnitudes and phase angles of the time and dimensions are 
functions of E' , P '  and E . For simplicity the gauge parameters B; and Bfi are 
assumed to have constant values 8&k and fifik respectively. Case A also describes 
partially coherent energy. 

Case B. IncohererlL Energy and Coherent Spacetime and Dimension. 

This is the case of a slow thermodynamic process that occurs in the super- 
conducting state of a high-Tc superconductor substance. Combining equations 
(251)  through ( 2 5 3 )  with equation (438 )  and using the following conditions for 
thecoherence of time and dimension 

gives the following decoupled equations 

CS cs-cs CS cs-CS -cs-cs 
( 1  -jua/aE) (tCS - jDtkBEkt ae,/a~~~) + j ~ ~ ~ ~ ~ ~ t  ae,/apcs+wt t = o (450 )  

where it is assumed that E and ECS are independent variables and that 

For this case the magnitudes of the time and dimensions are constants. 

Taking the real and imaginary parts of equations (450 )  through ( 4 5 2 )  gives 
the following sets of equations that describe the superconducting state of a 
high-Tc compound 



1 + raet/ae - y n ~ ; s ~ ~  a 2 e t / a ~ a ~ "  c w t S  C O ~  eWt = o (454) 

CQ C 8  C S  CS - DtkBn a O t / a ~ C S ( i  + yaet /a€)  + DskBpg a O t / a ~ C s  + wEs s i n  0 = 0 W t (455) 

c s  cs 2 
I + y a e D s / a ~  + yDtkBEk a e D S / a ~ a ~ "  + wi: cos e = o 

WDs (458 )  

D:;B;: aeDs/aECS(l + y a e D S / a ~ )  - c s  c s  aeDs/ap c s + wDs s in  ems = o (459) 
C S  

The de r iva t ive  of the i n t e r n a l  phase angle of t i m e  w i t h .  respec t  t o  t h e  temper- 
a t u r e  is then ca l cu la t ed  a s  

where the approximation i n  equat ion (460) is  valid i f  E~~ and pCS are slowly 
changing func t ions  of temperature.  

Case C. Coherent Energy, Coherent Spacetime and Coherent Dimensions. 

This case corresponds t o  an u l t r a f a s t  thermodynamic process i n  t h e  super- 
conducting phase of a high-T, mate r i a l .  Then equat ion (438)andequat ions  (251) 
through (253) give t h e  decoupled equat ions f o r  t o t a l  coherence a s  

t c  t c - t c  t c  t c - t c  
(1  - j y a l a r )  ( t t c  - jD tk B ~k t a e t / a ~ t C )  + jDskBpkt aet/aptC = o (461) 

t c  t c - t c  rc t c - tc  
(1 - j V a / 3 ~ )  (;FC + j ~ t k ~ ~ t  ae, , /a~~')  - ~D~~B,,,D~ a e D t / a ~ "  +gDt5ttC = o (462) 

These equat ions l ead  t o  r e l a t i o n s  analogous t o  equat ions (454) through (459). 

F ina l ly  i t  should be s t a t e d  t h a t  f o r  a noninteracr ing system with  BE = 0 
and Bp = 0 i t  fo l lows  from any of the basic subs t ruc tu re  dependent eigenvalue 
equations such as equat ions (446) through (448) t h a t  



whose solutions for constant external potentials are 

Similar solutions hold for the case of coherent spacetime (Case B) and for the 
coherence of both thermodynamics and spacetime (Case C). 

8 ,  QUANTIZED TIME AND DIMENSION STRUCTURES OF ENERGY AND PRESSURE. This 
section considers structured energy and pressure and develops the eigenvalues 
and eigenfunctions that describe the time and dimension structures that can 
exist in a pressure and energy density space in which a Coulomb-like form of 
external potential is present. A set of second order Schradinger-Like equa- 
tions is developed which determines the spectrum and eigenfunctions fortime,and 
dimension structures. For a limited region of energy density-pressure space 
where BE and Bp are approximately constants, the solutionof the decoupledfirst 
order time, rime dimension and space dimension equations (324) through (326) 
with zero external potentials can according to equations (340) through (352) be 
written as 

- --h 
r = A t  exp Ot 

--h 5t = BD exp mDt 
t 

--h 5 = exp mDs 
s s (464)  

where the harmonic solutions are obtained from equations ( 3 4 7 ) ,  ( 3 4 9 )  and (351), 
after dropping the primes for convenience, as 

where b , l , f , aI , vI , rlI , Dtk ' Dsk , BEk and BPk are all constants. Equations 

(465) through ( 4 6 7 )  are only approximate solutions because they assume BE and 
Bp to be constants. 

A. SchrBdinger Form of the Time and Dimension Equations. 

The time and dimension equations that were developed in Section 5 are first 
order differential eigenvalue equations that describe the spectrurnandeigenfunc- 
tions of time and dimension in an energy density-pressure field. They are the 
bulk matter analogs of the Dirac equation for microscopic particle systems. How- 
ever, the approximate solutions in equations (465) through (467) suggest the 
definition of the following differential operators 



where y and a = fundamental constants that define the quantum structure of bulk 
matter, Combining equations ( 4 6 5 )  through ( 4 6 7 )  with equation ( 4 3 1 )  gives 

Now consider the following eigenvalue equations 

where Et , EDt and EDs are eigenvalues to be determined. Combining equations 
( 4 6 9 )  and ( 4 7 3 )  with equations (465 )  through ( 467 )  gives 

so that equations (465) through ( 467 )  are solutions of the eigenvalue equations 
(473) provided that 

where y is given by equations ( 4 3 9 ) ,  ( 4 4 1 ) ,  ( 4 4 2 )  or ( 4 4 3 )  and a = constant 
having the dimensions of energy. 

For the special cases of the time box, time dimension box and space dimen- 
sion box described by equations (360) through (362) it follows from equations 
( 4 7 7 )  through ( 4 7 9 )  that 

which are associated respectively with the following wave functions 



which are eigenfunctions of the operator H given in equations (469). Therefore 
for zero values of the external potential, the approximate solutions of the 
first order bulk matter eigenvalue equations as given by equations(465)through 
(467) are also solutions to the second order Schradinger-like equations (473) 
provided that the eigenvalues of the Schrsdinger-like equations are given by 
equations (477) through (479) for the general case and by equations (480)through 
(482) for boxes in energy-pressure space. 

This suggests that for an external potential operating in energy-pressure 
space, the second order SchriSdinger-like equations for time and dimension that 
approximate the first order decoupled Dixac-like bulk matter eigenvalue equa- 
tions (315) through (317) are written as 

These equations give the stationary states of time and dimension with respect 
to a substructure parameter n = parricle number density of the substructure 
particles (chronons) of time and dimension. For stationary states the time and 
dimensions have a dependence on the substructure parameter n thatisdescribedby 

Equations (489) through (491) are equivalent to equations (486) through (488). 
This suggests that the general second order quantum equations for bulk matter 
with arbitrary dependence on the time and dimension substructure particle 
(chronon) number density ark  given by 

For stationary states equations (492) through (494) reduce to equations (486) 



through (488). 

It should be remembered that the second order bulk matter eigenvalueequa- 
tions treated in this section were developed from the decoupled first: order 
quantum bulk matter equations for time and dimension (Section 6) under the ap- 
proximation that the gauge parameters BE and Bp are constants. Thus the second 
order eigenvalue equations are only approximations that are valid in limited 
ranges of the pressure and energy density and only when the decoupling (linear- 
ization) procedure of Section 6 is valid. The nonlinear coupled first order 
eigenvalue equations of Section 5 are valid for the full range of pressure and 
energy density. Equations (486) through (488) and (492) through (494) can be 
generalized t o  the case of complex number energy density and pressureas follows 

and for the case of dependence on a substructure particle (chronon) number den- 
sity 5 

-- 2 2 
~t = [- ay (a / a ~ ~  + a 2 / a ~ 2 )  + Vt]E = jvaE/aii (498) 

Equation (444) relates chronon energy density to chronon particlenumberdensity. 

The constant y has the units of energy density and the constant a has the 
units of energy as designated in the following way 

The substructure particle number density n is different from and unrelated to 
the particle number density of matter n = E/E where E: = average single particle 
energy. The particles constituting the substructure of time and dimension are 
not known experimentally, but their existence can be conjectured from the sec- 
ond order time and dimension equations given in equations (492) through (494) 
and equations (498) through (500). The constants y and a are fundamental con- 
stants of the quantum theory of time and dimension. In order to regain the 
standard Schrodinger equation for particles from equations (492) through (494) 
the following connections have to be made 



However, t h e  quantum bulk mat te r  equat ions (492) through (494) a r e  fundamentally 
d i f f e r e n t  from t h e  Schr8dinger equat ion f o r  p a r t i c l e s  because equat ion (492), 
f o r  ins tance ,  has t i m e  i n  t h e  numerator and t r e a t s  time as a wave function i n  
energy-pressure space. Values of y f o r  var ious  energy s c a l e s  a r e  given i n  equa- 
t i o n s  ( 4 3 9 ) ,  (442) and (443). 

For coherent time t h a t  is assoc ia ted  wi th  the  superconduating s t a t e  of hfgh-T, 
mater2als t he  change i n  time i s  given by dF = jZdet with t = cons tan t ,  and equa- 
t i o n  (492) becomes 

where has been divided out  i n  order  t o  ob ta in  equation (505). Taking the real 
and imaginary parts of equat ion (505) gives 

2 2 2 2 - 2  - ay [ a  e / a E  + a Bt/ap ] + V s i n  O V t  = 0 
t t (507) 

and a l s o  BEt = 0 . I f  EL = constant  then 

- 0, - 0: - ( ~ ~ / y ) n  

Because i n  general ll i s  an increas ing  function of temperature for T > Tc i t  
fol lows tha t  B t  i s  a decreasing func t ion  of temperature above t h e  critical tem- 
pera ture .  For T i T, t h e  i n t e r n a l  phase angle  of time is given by B t  =  IT/^ so 
t h a t  n is a constant given by 

0 
The value  of O t  depends on t h e  atomic s t r u c t u r e  of t h e  high-Tc compound. For a 
zero value of t h e  e x t e r n a l  p o t e n t i a l  the i n t e r n a l  phase angle  of coherent time 

. is determined by 

where Et = cons tan t .  A s imple  s o l u t i o n  i s  

et: = aE + 6P 

where a and 6 are cons tan ts  tha t  s a t i s f y  



This suggests that for z = constant 

2 112 a = [Et/(ay 11 sin z 6 = [Et/(ay 2 )I 112 cos z (514) 

and 

sin z + P cos z) 0; = [Et/(ay 11 (515) 

for the case of zero exrernal potential. Equation (511) is Laplace's equation 
in energy density-pressure space, and equation (510) is the eikonal equation 
for the internal phase angle of time. 

The general solutions to equations (492) through (494) can be written as 
a sum over eigenfunctions as follows 

Time, time dimension and space dimension can be interpretedtobewaveEunctions., .:  
and they are subject to normalization conditions of the form 

B. Coulomb Form of External Potential in Energy-Pressure Space. 

Consider now the bound states associated with a Coulomb form of external 
potential in two-dimensional energy-pressure space gi-ven by 

- v = - g1.y 2 -2 112 z =  ( E  + P )  (520) 

where 

g = g exp(j0 ) = constant 
g 

(521) 

Then any of the equations (495) through (497) can be written in terms of a two- 
dimensional Laplacian in polar coordinates of energy density-pressure space as 

where 

tan 5 = FIE 

where 

sin 3 = i j / F  



- - -  
and where collectively 5 = E ,6  or 5 ; V = Vt , vDt t or and = 

or 5. . s Ds ' t3%t' 

Assuming separation of variables in the form 

- 
$ = R ( r ) 5 ( ; )  

allows equation (522) to be written as17 

2- -2 
d @ I d +  + t 2 5  = 0 

-2 2- -2 -2-2 -2 - 
r d R/dr + Fdg/dr + (k r - M )R = 0 

. . 

FI = rn cos 0 exp(-  j 0  ) 9 + m = 0,+1,+2,+3, 

2 2 ii2 = (i + , . a  = c2 + ( i / ; )  / (av  
0 

where 

2 2 c2' = E/(ay = - I E / / ( a y  exp(jOE) 
0 

and f i n a l l y  ko = - ik; . 
The solution of equation ( 4 6 9 )  i s 1 '  

The solution to equation (527) for bound states described by equation (530) can 
be obtained by making the following substitutions 

where ' 
- 
M' = Iml cos e e -je+ 

9 

Equation ( 5 3 6 )  can also be written as 



Then equat ion (527) becomes 

xd2y/dii2 + (3 - x)dy/dx - ;y = 0 

where 

Equation (540) is  the  confluent  hypergeometric equat ion but  with complex 
2 3 number dependent and independent v a r i a b l e s .  The two s o l u t i o n s  t o  equat ion 

(540) a r e  written as23  

Only the  f i r s t  s o l u t i o n - i s  f i n i t e  a t  2 a 0 . This  can be seen by not ing t h a t  
equat ion (541) gives 

and the  real p a r t  of E' i s  p o s i t i v e  because17 

and the re fo re  1 - BR < 0 and t h e  second s o l u t i o n  diverges a t  x = 0 . A general- 
i z a t i o n  t o  complex numbers of a w e l l  known power s e r i e s  expansion g i v e s 2 3  

m 

where 

The only way the so lu t ion  i n  equat ion (545) can be finite is  i f  t h e  s e r i e s  
breaks o f f ,  and the re fo re  from equat ion (546) C must b e  zero o r  a negat ive 
i n t e g e r .  Theref ore equat ion (541) i s  w r i t t e n  as 

where n '  i s  a p o s i t i v e  integer o r  zero,  n '  = 0 , 1 , 2 , 3 , - - *  . From equation (547) 
i t  fo l lows  that 

E: = g/[2ayL(G + 1/21 1 

where 

{ = El + n' 

Equations (538) and (549) g ive  



q cos = (ml cog2 B + n1 n d 
rl s i n  0 = - Iml c o s  0 s i n  9 

rl 9 9 

from which i t  follows that 

tan 0 = - (Iml coa 6 s i n  ~ + ) / ( l r n l  c o s 2  e + n ' )  n 9 9 

n2 = Irnl (lml c 2 n ' ) c o a 2  0 + nt 2 
9 

where 

so that n i s  a pos i t ive  integer or z e r o ,  n = 0 , 1 , 2 , 3, - 9 -  , 

The energy eigenvalues are obtained from equations (533) and (548) t o  b e  

- 2 - , 2  2 
En = - ey ko = - [ i 2 / ( 4 a y  ) 1 / ( i  + 1 / 2 )  2 

(555)  

The right hand s i d e  o f  equation (555) can be  s i m p l i f i e d  by writing 

i = ii + 112 

where 

R = N e x p ( j e N )  ;i = rl e x p ( j 8  1 
" n 

Equations (556)  and (557)  g i v e  

N sin ON = q s i n  0 n (559)  

where eq and TI are given by equations (552) and (553) respectively.  From equa- 
t ions (558)  and (559) i t  follows that 

tan eN = (n  sin e,,,)/(n cos 0 n + 112) (560)  

For O = 0 equations (553) and (561) give TI = n and N = n + 112 . With these 9 definitions the energy levels of equation (555) can be  written as 

t = E e j e ~ n  = - [ i 2 / (4ay2 ) l / f 12  
rl n (562)  



and the measured energy is given by 

E = E cos 8 
rlm rl En ( 5 6 5 )  

where eN and N are given by equations (560) and ( 561 )  respectively. The ground 
state obtained from equation (555) when 5 = 0  (or m = 0 and n' = 0 )  is given by 

For real values of the energy density and pressure, an identical analysis gives 

E = - [g2/(4ay2) I/(. + 1/21 2 
n (567) 

where n = 0, 1 ,  2 ,  3 ,  --• is a positive integer or zero given by equation ( 5 5 4 ) .  
The corresponding ground state is 

Note - that the energy eigenvalues E,., calculated in this section can be either - 
' E ~ t n  or E corresponding to equations ( 4 9 5 )  through ( 4 9 7 )  respectively. 

Dsr l  

The eigenfunctions corresponding to the eigenvalues given in equation 
(562) are obtained from equations ( 5 3 7 ) ,  ( 5 4 1 ) ,  ( 5 4 2 )  and ( 5 4 7 )  to be 

- - 
then equation ( 5 3 9 )  gives R(E,P)  . Combining equations ( 541 )  and ( 5 4 8 )  gives 

and therefore equation (569) becomes 

This gives the eigenfunctions for the bound states of a particle trapped in a 
Coulomb-form of potential in energy-pressure space. 

Combining equations ( 5 2 0 )  and (555) suggests that the energy density and 
pressure in a macroscopic system with a Coulomb-like attractive potential in 
energy-pressure space will have quantized values determined by 



or  i f  only r e a l  va lues  a r e  considered 

The minimum values of p re s su re  and energy dens i ty  occur i n  the  ground s t a t e  
which has 

The energy dens i ty  and p re s su re  i n  t h i s  s p e c i a l  bulk matter  system can e x i s t  
only with quantized va lues  of <rn> because time and dimension behave l i k e  wave 
func t ions  i n  bulk mat te r .  The bound s t a t e s  of timeanddimensionsformstructures 
i n  energy-pressure space t h a t  have quantized energ ies  given by equat ions (555) 
through (568) and quantized ex tens ion  i n  energy densi ty-pressure given by equa- 
t i o n s  ( 5 7 2 )  through ( 5 7 4 ) .  These s t r u c t u r e s  a r e  t h e  bulk  matter  analogs of the 
atomic s t r u c t u r e s  of e l e c t r o n s  i n  atoms. The quant ized s t r u c t u r e s  of t i m e  and 
dimension in -ene rgy  densi ty-pressure space may e x i s t  i n  bulk matter  a t  high en- 
ergy d e n s i t i e s  and pressures  a s soc i a t ed  with t h e  i n t e r i o r s  of s t a r s ,  p l a n e t s  
and atomic nuc le i .  

The i n t e r n a l  s t r u c t u r e s  of stars, p l ane t s  and atomic n u c l e i  may be more 
complicated than conventional theory p r e d i c t s  because the  energy dens i ty  and 
pressure  may under some condi t ions  be quantized va r i ab l e s  assoc ia ted  wi th  the  
wave func t ions  of time and dimension i n  bulk mat ter .  The quantized s t r u c t u r e s  
may e x i s t  i n  the  cores  of ord inary  stars as well a s  i n  compact o b j e c t s  Like 
neutron s t a r s  and white  dwarfs. These s t r u c t u r e s  may a l s o  e x i s t  i n  t h e  in t e -  
r i o r s  of atomic n u c l e i w h e r e  t h e  dens i ty  of nuclear  matter  v a r i e s  r ap id ly  with 
r a d i a l  d i s t ance  from t h e  cen te r .  The c a l c u l a t i o n  of thermonuclear energy gen- 
e r a t i o n  r a t e s  w i l l  be a f f e c t e d  by t h e  n a t u r e  of t he  time and dimension s t a t e s  
of bulk matter i n  s t e l l a r  i n t e r i o r s .  S t e l l a r  i n t e r i o r s  are composed of r e a l  
gases with non-zero gauge parameters BE and Pp . ' The ca l cu la t ion  of t h e  nu- 
c l e a r  r eac t ion  r a t e s  w i l l  be a f f e c t e d  by t h e  gauge parameters and the  n a t u r e  of 
the time and dimension s t a r e s  of t h e  bulk marter i n  s t e l l a r  i n t e r i o r s .  The'  
p red ic ted  r a t e s  w i l l  depend on whether time and dimension are coherent o r  inco- 
herent  and whether quantized s t r u c t u r e s  of tfme and dimension e x i s t  wi th in  t h e  
energy dens i ty -p re s su re~space  of t h e  i n t e r i o r  of s t a r s .  S t a r s ,  p l ane t s  and 
atomic n u c l e i  may exh ib i t  complex time and dimension s t r u c t u r e s .  

9 .  CONCLUSION. A previous ly  developed gauge theory of thermodynamics is  
extended t o  consider  coherent a s  we l l  a s  incoherent  spacetime. The r e l a t i v i s -  
t i c  thermodynamic t r a c e  equat ion of t he  gauge theory o f  thermodynamics i s  then 
converted t o  an eigenvalue problem thereby producing the  bas i c  equat ion of 
quantum thermodynamics. From a previously developed gauge theory of t i m e  and 
dimension i n  bulk matter, a quantum theory of t i m e  and dimension is  c rea t ed  i n  
terms of f i r s t  and second order  d i f f e r e n t i a l  eigenvalue equat ions i n  energy 
densi ty-pressure space. The subs t ruc tu re  of rime and dimension is considered 
by introducing t h e  concept of a time coherent boson ca l l ed  the  chronon. Solu- 
t i o n s  t o  t h e  time and dimension eigenvalue equat ions are considered and appl ied  
t o  a p a r t i c l e  trapped i n  a time box and a dimension box i n  energy density-pres- 
su re  space. The s p e c i a l  case  of a Coulomb-like p o t e n t i a l  i n  energy dens i ty-  
pressure  space is  examined. This  form of po ren r i a l  is  suggested because a t  
high pressure  and energy dens i ty  the p o t e n t i a l  vanishes and t h e  system e x h i b i t s  



asymptotic freedom. Quantized t i m e  and dimension s t r u c t u r e s  may e x i s t  i n  t h e  
i n t e r i o r s  of s t a r s ,  p l a n e t s  and atomic n u c l e i ,  and t h e  r eac t ion  r a t e s  and geo- 
me t r i ca l  s t r u c t u r e s  of t he  nuc lear  and chemical processes i n  these  o b j e c t s  may 
be a f f e c t e d  by these  time and dimension s t r u c t u r e s .  The ex i s t ence  of quantum 
time and dimension s t r u c t u r e s  i n  bulk matter  implies  t h a t  t h e r e  a r e  reg ions  i n  
energy densi ty-pressure space where chemical and nuc lear  processes  can be en- 
hanced o r  depressed. This may have app l i ca t ions  t o  t h e  e x p l a n a t i o n o f t h e f o r -  
mation of order  and s t r u c t u r e  i n  non-equilibrium s i t u a t i o n s  such as i n  t he  
Belousov-Zhabotinskii r eac t ion ,  and f o r  t h e  Turing s t r u c t u r e s .  24-26 Time and 
dimension s t r u c t u r e s  may a l s o  occur i n  e l e c t r o n i c  dev:ices t h a t  u t i l i z e  high-Tc 
superconductors because t h e  superconducting s t a t e  of a high-Tc ma te r i a l  i s  a 
coherent t i m e  s t a t e .  I n  t h i s  case  t h e  s t r u c t u r e  is a s soc i a t ed  with t h e  i n t e r -  
n a l  phase angles  of t i m e  and dimension f o r  a gas of coherent time Cooper e lec-  
t r o n  p a i r s  i n t e r a c t i n g  with coherent time phonons of a c r y s t a l  l a t t i c e .  
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ULTRAFAST COHERENT HEAT ENGINES 

Richard A. Weiss 
U.  S.  Army Engineer Waterways Experiment S t a t ion  

Vicksburg, Miss i ss ippi  39180 

ABSTRACT. This  paper considers  t h e  p o s s i b i l i t y  of developing u l t r a f a s t  
thermodynamic engine cyc les  t h a t  opera te  by t h e  exchange of i n t e r n a l  phase hea t  
with t h e  environment. These engines opera te  on t h e  b a s i s  of t h e  f i r s t  and sec- 
ond laws of thermodynamics which a r e  wr i t t en  i n  a form where t h e  entropyand in-  
t e r n a l  energy a r e  complex numbers which r o t a t e  i n  an i n t e r n a l  space during an 
u l t r a f a s t  process .  Several  types of c y c l i c  engines a r e  considered i n  which the  
magnitudes of both t h e  entropy and i n t e r n a l  energy rema,in f i xed  dur ingeachpor-  
t i o n  of t h e  cyc le .  The e f f i c i e n c i e s  a r e  ca lcu la ted  f o r  i n t e r n a l  phase engine 
cyc les  of t h e  type: Carnot,  Otto,  Diese l ,  S t i r l i n g ,  Ericsson and Brayton. These 
e f f i c i e n c i e s  a r e  complex numbers whose r e a l  p a r t s  represent  measured e f f i c i e n -  
c i e s  t h a t  must always be l e s s  than uni ty .  A b r i e f  d i scuss ion  is  given of t h e  
app l i ca t ion  of broken symmetry i n t e r n a l  phase engine cyc les  t o  p r a c t i c a l  power 
sources and t o  t h e  thermodynamic processes t h a t  occur i n  high speed computer 
memories. The p o s s i b i l i t y  of developing high-T, superconducting e lec t ron-pa i r  
engines i s  considered. 

1. INTRODUCTION. Man has  always searched f o r  new power sources.  The de- 
velopment of h e a t  engines predated the  science of thermodynamics. I n  f a c t  t h e  
e a r l i e s t  steam tu rb ine  w a s  developed i n  Alexandria by Hero i n  abour 120 B.C. ,  
while the next development came o n l l  a f t e r  t h e  dark  ages  when Branca developed 
an impulse steam tu rb ine  i n  1629. During the  period 1663-1700 t h e  Marquis 
of Worcester and Savery developed a steam powered pumping machine. In1690New- 
comen developed a steam powered walking beam engine. Around 1763 Watt develop- 
ed the  f i r s t  modern steam engine. Although e a r l y  steam tu rb ines  were developed 
i n  1859 by Lava1 and by Parsons i n  1884 i t  was not  u n t i l  the  twent ie th  century  
t h a t  t h e  steam t u r b i n e  had commercial development. The i n t e r n a l  combustionen- 
g ine  o r ig ina t ed  about 1690 when gunpowder was used a s  t h e  f u e l t o d r i v e a p i s t o n  
i n  a cy l inder .  The f i r s t  pa t en t  f o r  a gas engine was awarded i n  Englandin1794, 
but  the  first p r a c t i c a l  gas  engine was produced by Lenoir i n  1860. I n  1876 Otto 
developed a g a s  engine t h a t  had some commercial success .  The gas t u rb ine  en- 
gine was developed i n  1791 by Barber, and hot  air engines were developed by 
S t i r l i n g  and Ericsson i n  1827. Since the  beginning of t he  twent ie th  century 
l i q u i d  f u e l s  such a s  gaso l ine  and petroleum have replaced che gas engine. In 
1892 Diese l  used compressed a i r  t o  make a p r a c t i c a l  engine t h a t  burned heavy 
o i l s .  Leduc developed t h e  j e t  engine i n  1913. A l l  of t hese  engines burn wood 
o r  f o s s i l  f u e l s  and t h e i r  opera t ion  po l lu t e s  the  atmosphere. New power sources 
must be developed i n  order  t o  reduce t h e  consumption of f o s s i l  f u e l s .  This pa- 
per  cons iders  t he  p o s s i b i l i t y  of generat ing power by c r ea t ing  u l t r a f a s t  h e a t  
engines t h a t  ope ra t e  with coherent hea t .  Also t h e  p o s s i b i l i t y  of opera t ing  an  
engine i n  coherent spacetime i s  considered by using high-T, superconducting 
Cooper e l e c t r o n  p a i r s  a s  a working substance f o r  t h e  engine. 

The f i r s t  l a w  of thermodynamics was discovered by Mayer i n  1842 and by 



Jou le  i n  1843 near ly  two mi l l en i a  a f t e r  t he  f i r s t  hea t  engine was conceived. 
This l a w  s t a t e s  t h a t  mechanical work can be changed i n t o  an equivalent  amount 
of hea t  and v i c e  versa.  1-3 Combined with the  second law of thermodynamics, 
which s t a t e s  t h a t  f o r  a closed system the  amount of entropy ( d i s 0 r d e r ) i n c r e a s e s  
o r  remains constant  during a process ,  t he  f i r s t  law of thermodynamics can be 
w r i t t e n  a s  2-1 0 

TdS = dU + PdV + Hda (1) 

where T = absolu te  temperature,  S = entropy,  U = i n t e r n a l  energy, P = pressure 
and V = volume of a f ixed  amount of ma te r i a l ,  M = general ized fo rce  and u = g e n -  
eralized coordinate .  The combined f irst  and second laws can also be w r i t t e n  as 
the  Gibbs-Helmholtz-Maxwell r e l a t  ions2'l 

Es sen t i a l l y  a l l  of thermodynamics can be derived from equations (1) and ( 2 ) .  

Recently i t  has been suggested t h a t  t h e  thermodynamic func t ions  such a s  
pressure ,  i n t e r n a l  energy and e n t r o  y have i n t e r n a l  phase angles  and must be 
represented a s  com l e x  numbers. l1 3'' Within t h i s  formalism equat ions ( I )  a n d  
(2) a r e  w r i t t e n  a s  f 2 

where a and V are taken t o  be independent v a r i a b l e s  and where , i, F and fi = 
complex number entropy, i n t e r n a l  energy, pressure  and general ized fo rce  respec- 
t i v e l y ,  and a = general ized ex tens ive  va r i ab l e .  Equations (3) and (4) lead  t o  
complex number renormalizat ion group equat ions which can be used t o  determine 
thermodynamic func t ions  such as t h e  GrUneisen funct ion.  ' The entropy,  i n t e r n a l  
energy, pressure  and genera l ized  f o r c e  t h a t  appear i n  equat ion (3) can be wr i t -  
ten as12 

where S , U  ,P and M = magnitudes of t h e  entropy,  i n t e r n a l  energy, pressure  and 
general ized fo rce  r e spec t ive ly ,  and BS , 8~ , Bp and BM = i n t e r n a l  phase angles 
of t h e  entropy,  i n t e r n a l  energy, pressure  and general ized force  respectively. 
The measured thermodynamic func t ions  are 

Sm = S cos 8 S Urn = U cos 0 U 

pm = P coS e 
P 

Mm = M cos 9 M 

For t h e  s p e c i a l  case  of coherent h e a t  engine cycles  where t h e  entropy and 



i n t e r n a l  energy vec to r s  are ro t a t ed  i n  an i n t e r n a l  space with t h e  magnitudes 
S and U held fixed during a thermodynamic process ,  equat ion  (3) becomes f o r  
incoherent  space12 

Equation (10) r ep re sen t s  the  f i r s t  and second laws of thermodynamics f o r t h e s p e -  
1 2  c i a 1  case  of an u l t r a f a s t  process .  From equat ion (10) i t  is easy t o  showthac 

the  pressure  assoc ia ted  with a t r a n s f e r  of i n t e r n a l  phase of entropy and i n t e r -  
n a l  energy a t  constant  S and U i s  given by12 

where a = a(V,T) and where 

J = S e j e ~  = ,/, E = Eejeu = i / v  j j  C = ,/,. (12) 

- 
and where 3 = incoherent average entropy dens i ty ,  E = incoherent  average energy 
dens i ty ,  and ill = incoherent average general ized f o r c e  dens i ty .  From equations 
(7). and (11) i t  fol lows t h a t  approximately12 

For this case equat ion (4) becomes with S and U f i xed  

if a and V a r e  taken t o  be independent v a r i a b l e s .  There i s  a pressure  associ- 
aced with i n t e r n a l  phase changing thermodynamic processes  and according t o  equa- 
t i o n  (14) t he  pressure  i s  perpendicular  t o  t h e  i n t e r n a l  energy and entropy i n  
i n t e r n a l  space. This  i s  analogous t o  t h e  c l a s s i c a l  Magnus e f f e c t  i n  hydrodyn- 

1 3 - 1 6  amics . 
For the a d i a b a t i c  case  where dS = 0 (o r  dS = 0 and dB9 = 0) a s  wel l  a s  

dU = 0 i t  fol lows f r o m  equat ions ( l l ) ,  (13) and (14) t ha t1  



It should be mentioned t h a t  i t  is  poss ib l e  t o  have thermodynamic processes  t h a t  
have f and S f ixed .  For t h i s  case  equat ion (11) g ives  

where i n  general  a = a(V,T) . The exac t  va lues  of P and Bp can only be obtained 
by obta in ing  the  r e a l  and imaginary p a r t s  of equat ions (15) and (18A) .  

A s  pointed out  i n  Reference 12, t h e  inc lus ion  of t he  general ized f o r c e  
terms i n  equat ion (10) is  a l o g i c a l  neces s i ty  f o r  i n t e r n a l  phase processes.  I n  
some ca l cu la t ions  i t  is poss ib l e  as a f i r s t  approximation t o  ignore  t h e  general- 
i zed  f o r c e s  but  i n  o the r  cases ,  such as the  constant  volume process  which occurs  
i n  t h e  cases  of t h e  Otto,  Diesel and S t i r l i n g  i n t e r n a l  phase cyc les ,  t he  gener- 
a l i z e d  fo rces  must be included a s  a l o g i c a l  n e c e s s i t y  t o  have t h e  p o s s i b i l i t y  
of thermodynamic cyc les  with U and S f ixed .  

Each path segment of every coherent engine cyc le  considered i n  t h i s  paper 
has  S and U a s  cons tan ts .  Each pa th  segment has  t he  same va lues  of S and U, i n  
o the r  words S and U a r e  f i x e d  f o r  t h e  e n t i r e  i n t e r n a l  phase cyc le .  Thus i f  Sbc 
and Sda a r e  two constant  va lues  of t h e  complex number entropy along the  pa th  
segments bc and da r e spec t ive ly ,  then (see Figure 1) 

and only t h e  i n t e r n a l  phases d i f f e r  on t h e  two path segments. For t h e  s p e c i a l  
case  of coherent h e a t  engines with coherent spacetime i n  the  working chamber 
(as i n  t h e  case  when t h e  working substance is  a gas of high-T, superconducting 
e l e c t r o n  p a i r s )  each segment of t h e  engine cyc l e  has  t h e  magnitudeofthevolume 
he ld  f ixed ,  and the  f ixed  volume magnitude is  t h e  same f o r  the  e n t i r e  i n t e r n a l  
phase cycle .  Therefore i f  Tab and Vcd a r e  two constant  va lues  of t h e  complex 
number volume along the path segments ab  and cd r e spec t ive ly  (see Figure 2 ) t h e n  

and again only the  i n t e r n a l  phases a r e  d i f f e r e n t  on t h e  path segmentsaband cd.  
This is  no t  t h e  case  with pressure .  Thus i f  two path segments bc and da have 
cons tan t  pressures  Fb, and Pd, r e spec t ive ly  (see Figure 4) then 

and the  magnitudes and the i n t e r n a l  phase angles are d i f f e r e n t  f o r  each p a t h  



segment. Note t h a t  t h e  pressure  does not  undergo a pure r o t a t i o n  during an ul-  
t r a f a s t  p rocess  as can be seen from equation ( 1 4 A ) .  

This  paper c a l c u l a t e s  the  thermodynamic e f f i c i e n c i e s  of s e v e r a l  u l t r a f a s t  
coherent h e a t  engine cyc les  t h a t  involve t h e  t r a n s f e r  of i n t e r n a l  phase hear  a t  
cons tan t  U and S.  Each engine cyc le  described i n  t h i s  paper ope ra t e s  on hea t  
energy t h a t  is introduced i n t o  t h e  engine i n  t h e  form of i n t e r n a l  phase hear .  
Each cyc le  converts  a po r t ion  of t h i s  i n t e r n a l  phase h e a t  i n t o  a n e t  usable  work 
and depos i t s  t h e  remaining i n t e r n a l  phase hear  i n t o  theenvironment inaccordance 
with t h e  f i r s t  and second laws of thermodynamics. For t h i s  r e a s o n t h e e f f i c i e n c y  
of an u l t r a f a s t  i n t e r n a l  phase h e a t  engine must be l e s s  t h a n u n i t y  a s  i n t h e  case  
of s tandard  engine cyc les .  During t h e  cyc le  t he  i n t e r n a l  energy of t h e  working 
substance r o t a t e s  and changes i t s  i n t e r n a l  phase angle ,  bu t  being a s t a t e  func- 
t i o n  t h e  i n t e r n a l  energy must r e t u r n t o  i t s  i n i t i a l  va lue  a f t e r a c o m p l e t e  cyc le .  
The e f f i c i e n c i e s  of t h e  engine cyc les  a r e  evaluated by c a l c u l a t i n g  the  r a t i o  of 
t h e  n e t  complex number work t o  t he  value of the complex number h e a t  introduced 
i n t o  t h e  engine during each cycle .  I n  general  t h e  e f f i c i e n c i e s  are complex num- 
bers  whose r e a l  p a r t s  a r e  t h e  measured e f f i c i e n c i e s .  The e f f i c i e n c i e s  a r e  eval- 
uated f a r  s eve ra l  p r a c t i c a l  and h i s t o r i c a l  engine cyc les .  Only closed thermody- 
namic cyc l e s  of a working substance are considered, and only changes of t h e  in-  
t e r n a l  phase angles  of entropy and energy a r e  considered i n  t h i s p a p e r .  Sect ions 
3 through 8 d e a l  r e spec t ive ly  with the  i n t e r n a l  phase c y c l e s o f t h e  Carnot,  Otto,  
Diesel, Ericsson,  S t i r l i n g ,  and Brayton engines.  By considering t h e  case  of 
coherent spacetime, t he  corresponding high-Tc superconducting e l e c t r o n  p a i r  en- 
g ine  f o r  each of t h e  above mentioned cycles  i s  t r e a t e d .  

2. BROKEN SYMMETRY THERMODYNAMICS. This s ec t ion  surmnarizes t h e  ca lcu la-  
t i o n  of p re s su re ,  hea t  exchanged, and work done f o r  p a r t i a l l y  coherent and to-  
t a l l y  coherent s t a t e s  of thermodynamic systems and f b r  incoherent  and coherent 
s t a t e s  of t h e  spacetime i n  which t h e  working substance of an  engine is  loca ted .  
Engine cyc l e  c a l c u l a t i o n s  done i n  t h i s  paper a r e  only f'or t h e  case  of coherent 
thermodynamics ( u l t r a f a s t  processes)  combined wi th  incoherent  spacetime (ordi- 
nary substances)  and coherent: spacetime (high-T,superconducting e l e c t r o n p a i r s ) .  
Incoherent spacetime is  assoc ia ted  with ordinary mat te r ,  coherent spacetime i s  
a s soc i a t ed  wirh t h e  superconducting s t a t e  of high-Tc substances,  and p a r t i a l l y  
coherent spacetime is  assoc ia ted  with the  normal s t a t e  of high-Tc ma te r i a l s .  

For t h e  genera l  case  of a thermodynamic system with broken symmetry ther -  
modynamic func t ions  and broken symmetry spacerime the  pressure  i s  given by12 

T ~ S  = d i ~  + FdV + E ~ E  ( 2 4 )  

= dG + Fld?( + E ( ~ E (  

where 

= V exp(j9  ) v a = a e x p ( j e a )  

dv = s e c  13 dV exp[j(BV + B W ) l  W 

= c~~ B vdeV exp [ j (OV + 6,,) I vv 



Id?( = sec BW dV = csc f3 VdeV 
W 

dE = sec  & da exp[j(O, + Baa)] aa  

- - csc  13,~ exp[j ( B a  + Baa) 1 

1 d~ 1 = sec  Baa da = csc Baa adocl 

t a n  6 = V a e v / a v  vv 

t a n  Baa = aaealaa 

From equat ion (5) i t  fol lows t h a t  

dU = sec  BUll dU exp[ j (BU + BUU) 1 

= csc  BUU UdeU exp[j (BU + BUU) I 

dS = sec  BSS dS exp [ j (eS + BSS) I 

= csc BSS SdeS exp [ j (oS + BSS) 1 

where 

t a n  BUU = uaeu/au 

t a n  BSS = saes/as 

The measured thermodynamic func t ions  are given by equat ions (8) and (9) while  
t he  measured extensive v a r i a b l e s  a r e  obtained from equat ion (25) a s  

vm = v cos 9 v a = a cos Ba 
m ( 3 6 )  

From equat ion (36)  i t  is  c l e a r  t h a t  v a r i a t i o n  of t h e  measured volume occurs  i n  
a  coherent heat engine cycle f o r  both incoherent  spacetime where OV = 0 a n d V i s  
a v a r i a b l e ,  and f o r  coherent spacetime where V = cons tan t  and E lv i sava r i ab l e .  
From equat ion (24) it follows t h a t  for a and V independent of each o ther  

s i n  Bw l/va8/aBv = T ~ F / ~ T  - s i n  Baa l/aaC/aOa = T ~ P / ~ T  - fi (36B) 



which a r e  t he  Gibbs-Helmholtz-Maxwell equat ions f o r  broken spacetime symmetry. 
For coherent spacetime wi th  pW = r /2  and Baa = 1~12 equat ion (36B)  becomes 

and f o r  coherent i n t e r n a l  energy with BUU = 7r/2 it fol lows from equat ions (32) 
and (36C) t h a t  

The f i r s t  i n t e g r a l  of t h e  d i f f e r e n t i a l  form of t he  f i r s t  and secondlawsof 
thermodynamics given i n  equat ion  ( 2 4 )  is the  following path dependent equat ion 

where 

- 
where ab r e f e r s  t o  a path  f o r  a spec i f i ed  thermodynamic - process ,  Wab =workdone 
by pressure, Gab = work done - by t h e  general ized f o r c e ,  Q,b = h e a t  t r a n s f e r r e d  
during t h e  process ,  and Ub - Ua = change i n  t h e  i n t e r n a l  energy. For a cyc l e  
a b  c d a  th ree  equat ions i n  a d d i t i o n  t o  equat ion (37) a r e  r e q u i r e d f o r a d e s c r i p -  
t i o n  of the  themadynamic cyc le  

Now t h ree  s p e c i a l  cases  of broken symmetry thermodynamics w i l l  be considered. 

A .  P a r t i a l l y  Coherent Thermodynamic State and Partially Coherent 
Spacetime. 

This  case corresponds t o  a moderately f a s t  process  i n  the  normal s t a t e  of 
a high-T, superconductor.  For t h i s  s i t u a t i o n  the pressure is  given by 



For a thermodynamic path segment uv ,where uv = ab ,bc ,cd , d a ,  the heat trans- 
ferred, change in internal energy, and the work done by the pressure and the 
generalized force are respectively given by - 

V 

Qpv = j) T ~ S  = I T sec flSS eup [ j (eS + B ~ ~ )  ]dS ( 4 4 )  
!J v 

- - 
U = U v  - B = J df= j sec BUU e x p [ j ( B U +  BW)]du UV 

Y IJ 

- 
w = / Pldvl = I sec $v dV = P csc BwVdeV 

u IJ '4 
v v - v 

w = I di/ = I a sec Baa da = / fi csc Baa adoa 
1-I ?J ?J 

Case A is included only for completeness, and no engine cycles with the partial 
coherence of spacetime and the partial coherence of thermodynamic functions are 
considered in this paper. 

B. Coherent Thermodynamics and Incoherent Spacetime. 

This case corresponds to an ultrafast process in an ordinary material. For 
this case S = constant, U = constant, BV = constant, 8, constant and 

Then the combined first and second laws of thermodynamics is.written as 

and the pressure is given as follows 

j (OS+v/2) - e j ( 0 ~ + ~ 1 2 )  j e~ F = T ~  e 
cth cth - &inc 

where cth refers to coherent thermodynamics, inc = refers to incoherent space 
and incoherent generalized coordinate, and where scth, ecth and aincaredefined 
by 



s = s ae,/av 
c t h  (51) 

e = u ae,/av 
c t h  (52) 

a = da/dV 
i n c  

From equat ion  (50) t h e  following approximations.are v a l i d  

P % T s  - e  
c t h  cth - Maine (53A) 

Equation (50) i s  j u s t  t he  pressure derived i n  equat ion (11). 

The hea t  t r a n s f e r r e d ,  change i n  i n t e r n a l  energy; and the work doneby the  
p re s su re  and genera l ized  forceonathermodynamicpathsegmentpv = ab ,bc , cd ,:da 
i s  given r epsec t ive ly  by 

V v 

Q p v  
= I T ~ S  = jS I T  exp(jBS)dBS ( 5 4 )  

U u 

From equat ions (56A) and (56B) it fo l lows  t h a t  
V 

W cos 0" = P cos Bp dV 
U'J W 

lJ 

w sin eUv = j P s i n  e dv 
U v W P u 

V 

w cos 0" = 1 M cos OM da 
PV W 

U 
v 

u s i n  opV = I M s i n  0 da 
UV u M 

P 

The real and imaginary par ts  of the work elements e n t e r  i n t o  t he  ca l cu la t ion  of 
engine e f f i c i e n c y .  



Using the mean value theorem f o r  i n t e g r a l s  and some appropr ia te ly  defined 
cons tan t  values f o r  t h e  pressure  and general ized f o r c e i n t h e i n t e r v a l ~ r v  al lows 
equat ions (56C) through (56F) t o  be w r i t t e n  a s  

w cos 0" = Pvv (Vv W - v )<cos 8 > 
lJv P p VV 

(56G) 

W s i n  0; = puV(vv - v )<s in  9 > 
P 'J ?J p P V  

(56H) 

where PuV and MpY are cons tan ts  def ined f o r  t h e  pa th  segment pv by equat ions 
, (56G) through ( 5 6 5 ) .  From equat ion (53B) it fol lows tha t  

<COS 0 > ?. - < s i n  8 S P v  - 1 
p P'J 

= (eUv - eUu) (COS eUv - cos e I 
UP 

(56K) 

- 1 
2. - G i n  e > = (oSv - 8 ) (cos BSv - cos 6 ) s U'J Sl l  s11 

- - 1 G i n  Q <COS Odpv - (BUv - OW) ( s i n  BUv - sin 0 ) 
UP 

Q GOS e > = - 1 
s PV (eSv - e,,,) ( s i n  OSv - sin 0 S il ) 

Because OM Q 0p the q u a n t i t i e s  <cos and <s in  a r e  given by equat ions 
(56K) and (56L) r e spec t ive ly .  

For small va lues  of BU and BS i t  fol lows from equat ions (56G)through (56L) 
t h a t  

Wuv 
cos el-lV Q - 

W PUV (VV - VP) (Buy + Bull) 12 (56M) 

P V  W sin Ow %PIIv(Vv - VI1) 
U'J 



These expressions w i l l  be used in Sections 3 through 8 to evaluate the efficien- 
cies of ultrafast engine cycles in the incoherent-spacetime of an ordinary work- 
ing substance. 

C. Coherent Thermodynamic Processes in Coherent Spacetime. 

This case corresponds to an ultrafast process in the superconducting phase 
of a high-Tc compound, and is described by S = constant, U = constant, V = con- 
srant, a = constant and 

This gives the following form for the combined first and second laws of thermo- 
dynamics 

The pressure is then given by 

where 

From equation (60) the following approximations are obtained 

e % 0 % 0 + T / 2  fb eu + n I 2  
P M S  (63B) 

For the thermodynamic path pv = ab , b c ,  cd,da it follows that for coherent 
spacetime and coherent thermodynamics 

- v 
Q,, = jS 1 T exp(jBS)dBS ( 6 4 )  

v 

= u[exp( jeUv)  - exp ( j e U u  1 



v -  v 
w = w exp(je:') = 1 Gdidh = J' i i l d ~ l  

lJv , uv v I-' 

These are the basic elements of coherent thermodynamic processes in coherent 
spacetime. 

From equations (66), (67) and (63B) it follows f o r  coherent  thermodynamics 
and coherent spacetime that 

v 



v 
u s i n  oPv = D M s i n  oM deo 

P'J W U 

For small values of BU and BS it  fol lows from equat ions (67A) through ( 6 7 D )  f o r  
coherent spacetime that 

uv W sin ew Q PuVV(BVV - BVY) 
P'J 

w cos 9" ,b - M 
Flv W 

Pva(eCLv - 0 a P (BUY + BUu)  12 

w s i n  8'' Q Mpva(eav  - eaU) 
PV W 

( 6 7 H )  

These equat ions w i l l  be used i n  Sect ions 3 through 8 t o  c a l c u l a t e  t h e  e f f i c i e n -  
c i e s  of u l t r a f a s t  high-Tc superconducting e l e c t r o n  p a i r  engines.  

3. ULTRAFAST CARNOT ENGINE. Carnot r e a l i z e d  t h a t  t he  opera t ion  of any 
thermodynamic engine requi red  the  t r a n s f e r  of h e a t  from a hot  r e s e r v o i r t o a c o l d  
r e se rvo i r ,  and t h a t  t h e  amount of hea t  transformed i n t o  work was pro o r t i o n a l t o  
t he  d i f f e r ence  i n  t h e  temperatures of the source and s i n k  of hea t .  2-e The Carnot 
cyc le ,  a s  given by Kelvin, is  represented i n  Figure la and c o n s i s t s  of four  d i s -  
t i n c t  processes ,  a -+ b isothermal  expansion, b + c a d i a b a t i c  expansion, c + d 
isothermal compression, and d + a a d i a b a t i c  compression. 2d9 The w e l l  known ex- 
pression f o r  t h e  e f f i c i e n c y  of the  conventional Carnot cyc le  i s  given by1-' 

where n = e f f i c i e n c y ,  Tab = temperature of ho t  r e s e r v o i r  and Ted = temperature 
of cold reservoir. The r e s u l t  i n  equation (68) i s  most e a s i l y  de r ivedus ing  the 
i dea l  gas as a working substance,  but i n  f a c t  equat ion (68) is  un ive r sa l ly  t r u e  
f o r  a l l  working substances.  2-9 Although the  Carnot engine has maximum e f f i c i e n -  
cy, i t  i s  no t  p r a c t i c a l  because t h e  mean opera t ing  pressure  i s  l o w  and t h e  cyc le  
cannot be a p p l i e d  t o  vapors.  This s ec t ion  considers  fhe u l t r a f a s t  i n t e r n a l  phase 
Carnot engine cycle. 



A.  I n t e r n a l  Phase Carnot Engine f o r  Incoherent Spacetime. 

Consider now t h e  u l t r a f a s t  i n t e r n a l  phase cyc le  f o r  t h e  Carnot enginewith 
ord inary  mat te r  as a working substance ( fo r  incoherent spacetime Case B of Sec- 
t i o n  2) t h a t  is  shown i n  Figure lb. The va r i ab l e s  and f ixed  q u a n t i t i e s  f o r  the 
var ious  path segments of Figure l b  a r e  

Variables Constants 

path ab  e S ' e U 9 ~ p y P , V l a  Y Tab (49)  

pa th  bc B p , P , V , T , a  bc ' S l u , e S  (70) 

path cd ~ s , O u l O p y P , V , a  S , U s Tcd (71) 

path da  
da ~ ~ , . e ~ ,  P , V ,  T ,  a s , u y e S  (72) 

From equat ion (54) i t  fol lows t h a t  t he  hea t  t r a n s f e r s  f o r  each path segment are 
w r i t t e n  a s  

- 
where oab ' - G b a s  Gcd = - Qdc and where because gb, = constant  and Sda = con- 
s t a n t  it fol lows t h a t  

The work elements are given by equations (49) through (56) as 

- b b b 
wab = I Fdv = aab - jU I exp(jBU)dBU - 1 fidu (79)  

a a a 



- d - d d 
- 
- c I Pdv = Gcd - J U  J c exp (j eU)deU - c J i i d ~  

where the works RpY and the  genera l ized  works wp, a r e  given i n  equation (56) f o r  
incoherent  spacetime. The pressure  assoc ia ted  with an u l t r a f a s t  thermodynamic 
process  i n  incoherent space is given by equat ion (50).  The net work f o r  the 
closed pa th  a b  c d a  i s  given by 

Subs r i t u t ing  equat ions (73) through (82) i n t o  equat ion (83) gives ,  a f t e r  t h e  can- 
c e l l a t i o n  of the i n t e r n a l  energy terms, t he  n e t  work as 

The change i n  i n t e r n a l  energy f o r  each pa th  segment is  obtained from equa- 
tion (55) t o  be  

so t h a t  f o r  a closed cycle 

which g ives  t he  cance l l a t i on  of t h e  i n t e r n a l  energy te.rms i n  obta in ing  equat ion 
( 8 4 ) .  Equation (89) i s  v a l i d  for a l l  of t he  u l t r a f a s t  engine cycles  considered 
i n  t h i s  paper because fi i s  a complex number s t a r e  func t ion  and 

$ d E  = 0 ( 9 0 )  



where t h e  i n t e g r a l  refers t o  any closed thermodynamic cycle .  

The complex number engine e f f i c i ency  is given by 

= i = 1 - a/s (91) 

where equations (73)  and (83) give  

- - - - A = - +w' + W  (92) 
'bc - 'cd - 'da ' 'ab ' 'bc cd da 

= Tcds[exp(jeSc) - exp(joSd)l  + w~~ +'bc +w' cd + G  da 

= G + j H  

Then t h e  e f f i c i ency  can be w r i t t e n  as 

and t h e  measured e f f i c i e n c y  i s  given by the r e a l  p a r t  of equation (94) so that 

- 
tlm - q~ 

= 1 - C  

where 

C = (GE + HI?) / (E' + F*) 

2 2 D = (HE - GF)/(E + F ) 

and where 

ab 
G = T S(COS oSc - cos oSd) + uab cos e cos e b c 

c d w + Wbc w 
( 9 8 )  * 

c d da + Wcd COS ow + Uda cos e 
W 

ab bc 
H = T S ( s i n  0 - s i n  O S d )  + dab s i n  Bw + wbc sin 

c d S c 

cd + ucd s i n  9 
f wda W 

s i n  eda 
W  



F = TabS(sin 0 - sin O ) 
Sb S a 

Mote also that 

Equations (95) through (101) show that for the Carnot engine the generalized 
work elements WPy enter directly into the calculation of efficiency, while the 
ordinary work elements qpu do not enter directly,  

If the generalized.work elemenrs are neglected in equations (98) and (99) 
it follows from equations (96) through (102) that 

Because BS varies inversely with S [as shown by equation (176) in the accompa- 
nying paper on the Quantum Theory of Time and Thermodynamics] it follows that 
0sb < Osa and Osc < Osd SO that equations (98) through (101) give G > 0 , H  .: 0, 
E > 0 and F < 0. Therefore the value of C given by equation (96) for the gen- 
eral case or approximately by equation (103) satisfies C > 0 and thereforefrom 
equation (95) rim < 1 because Ted < Tab as-shown in Figure lb. The measured 
efficiency of an ultrafast Carnot engine is always less than unity. 

For small values of internal phase angles BU and B S  equations (98) through 
(101) can be simplified by using equations (560) and (56P) as follows 



I f  i n  add i t i on ,  t h e  genera l ized  work terms can be neglected (which is  not  gen- 
e r a l l y  the  case)  then equat ions ( 9 6 ) ,  (97) and (107A) through (107D) g ive  

and the re fo re  because esc < eSd , 0 ~ b  < Osa and Tcd/Tab ' 1 it fol lows t h a t  
0 < C < 1 and t h e r e  nm < 1 as is required by the  second law of thermodynamics. 
F ina l ly ,  it fol lows from equat ions (107A) and (107B) t h a t  t h e  terms (a,, - av)  
must be f i r s t  o rde r  homogeneous func t ions  of t h e  terms (BSd 2 Osc) and 
(OU, + 0,) . 

B. I n t e r n a l  Phase Carnot Engine i n  Coherent Spacetime. 

This is  the case  of an u l t r a f a s t  coherent hea t  Carnot engine whose working 
substance i s  a gas of high-Tc superconducting e l e c t r o n  p a i r s  which e x i s t  i n  a 
coherent spacetime (Case C of Sec t ion  2) .  The v a r i a b l e s  and cons tan ts  f o r  t h e  
path segments of the closed cyc le  shown i n  Figure lc are a s  fol lows 

Var iab les  Constants 

path ab O S  Y eU 9 e V , e p , P ,  ea S , U , V , T a b , ~  (1.10) 

path bc B U S  g p a  e V , P  ST., 0 b c 
a S , U r V , B S  , a  (111) 

path c d  BS , B U S  eV y Bp , P r ea S , U , V y T c d r a  (112) 

da 
path da O U y @ p , @ V , P r T , e a  S , U , V , e S  , a  (113) 

For an  u l t r a f a s t  thermodynamic process  occurr ing i n  coherent space t ime thep res -  
su re  i s  given by equat ion (60) .  The thermodynamic func t ions  correspond t o  Case 
C of Sect ion 2.  The same expressions f o r  the e f f i c i ency  t h a t  were developed i n  
equat ions (91) through (109) f o r  incoherent spacetime a r e  a l s o  v a l i d  f o r  coher- 
ent spacetime provided t h a t  t h e  replacement 

i s  made f o r  a l l  expressions f o r  t h e  general ized work e l e m e n t s a s i s  doneiaequa-  
t i o n s  (67C), (67D), (67G) and (67H). With t h e s e  s u b s t i t u t i o n s  made i n  equat ions 
(107A)  and (107B) i t  fol lows t h a t  BIJ - 0" must be f i r s t  o rder  homogeneous func- 
t i o n s  of OSd 4 BSc and BUIJ + BU, . 

4. ULTRAFAST OTTO ENGINE. The most common t y p e  of i n t e r n a l  combustion 
engine is  based on t h e  Otto cyc le  (Figure 2a).  In  i t s  s imples t  form the  air- 
standard Otto engine cyc le  has  fou r  phases: a + b the  a i r  i s  heated a t  constant  
volume, b + c t h e  a i r  is  expanded r eve r s ib ly  and a d i a b a t i c a l l y ,  c -+ d the  a i r  
is  cooled a t  cons tan t  volume, and d + a the  a i r  i s  compressed r eve r s ib ly  and 
ad iaba t i ca l ly .  The i g n i t i o n  phase a + b c o n s i s t s  of a constant  volume cornbus- 



t i o n  o r  a cons tan t  volume process  of h e a t  a d d i t i o n  t o  t h e  equivalent  a i r  cyc le .  
In t h e  air-s tandard cyc le  a cons tan t  volume h e a t  a d d i t i o n  from an  e x t e r n a l  h e a t  
r e s e r v o i r  is s u b s t i t u t e d  f o r  t h e  combustion process ,  and a cons tan t  volumecool- 
ing  followed by an a d i a b a t i c  compression ends the cycle .  It is  easy t o  sho; 
t h a t  the e f f i c i e n c y  f o r  t h i s  c losed cyc le  convent ional  Otto cyc l e  i s  given by2-' 

= 1 - ( T ~  - t d )  /(T~ - T,) = 1 - T ~ / T ,  (114) 

This  can be r e w r i t t e n  i n  terms of t h e  compression r a t i o  r = V,/Vb a s   follow^^'^ 

where c = a d i a b a t i c  constant  = 1.4 f o r  i d e a l  gas. Unlike t h e  Carnot engine t h e  
Otto engine i s  not reversible and the re fo re  i ts  e f f i c i e n c y  is  lower than that: of 
the  Carnot engine. More complicated Otto cyc l e s  e x i s t  such a s  t h e  Otto cyc l e  
with t h r o t t l i n g .  2-9 

A .  I n t e r n a l  Phase Otto Engine f o r  Incoherent Spacetime. 

An u l t r a f a s t  i n t e r n a l  phase cycle f o r  t h e  Otto engine with ord inary  matter  
a s  a working substance i s  now considered. The v a r i a b l e s  and cons t an t s  f o r  t h e  
va r ious  thermodynamic pa th  elements of the i n t e r n a l  phase Otto engine f o r  inco- 
herent spacetime (Case B of Sec t ion  2) shown i n  Figure 2b a r e  as fol lows 

Var iab les  Constants 

pa th  ab O S , B U , O p y P y T , a  S 9 3 Vab (116) 

bc 
path bc e U y O p , P , V , T , a  S , U r e S  (117)  

path  cd e S , Q U y e p s P , T , a  , U , Vcd (1 18) 

d a  
pa th  da B U , B p , P , V Y T , a  S , U , B S  (119) 

From Figure 2b and equat ions (49) through (56B) it fol lows that for t h e  ultra- 
fast  Otto engine t h e  hea t  generated and exhausted a t  cons tan t  volume (paths  ab 
and cd) and a d i a b a t i c a l l y  (paths  bc and da) are given by 

- d d d 

Qcd 
= js J T exp(jBS)dBS = j U  I exp(jOU)dBU + I Gda 

C C C 



where Gb and Gcd = incoherent  work elements done by the general ized f o r c e s  f o r  
pa ths  ab and cd r e spec t ive ly  and which are given by eqaut ion (56B). If  t hese  
generalized f o r c e  terms were not  included then equat ion (10) shows t h a t  both 
pa ths  ab and cd with constant  volumes would have a  common cons tan t  temperature 
T = U/S ,with 8s = 8u ,and  a cycle would n o t  be poss ib le .  Thusgene ra l i zed fo rces  
must be included i n  the i n t e r n a l  phase Otto cycle .  

From equat ions (49) through (56B) i t  is  easy t o  s e e  t h a t  theworkdonealong 
the path segments i s  given by 

For an u l t r a f a s t  thermodynamic process  i n  incoherear  spacerime the pressure i s  
given by equat ion (50).  Then the t o t a l  work done f o r  the complete cycle i s  

c = i  
ab + 'bc + 'cd + 'da (128) 

- - 
=U[exp(je , )  - exp(jeU,> + e x p ( j e U d >  - exp(jBUc)l - o bc - W  da 

The complex number e f f i c i ency  is given by 

- 
ii = W/gab = 1 - E/B 

where 

- - 
A = U [ e ~ p ( j @ ~ ~ )  - exp(jeUd)l  + mab + Gbc + Sda 

B = U[exp(je,) - exp(jBUa) 1 + Gab 



Equations (129) through (131) can be r ewr i t t en  as 

T = n exp( jen)  = 1 - (G + ~ H ) / ( E +  jF )  

= 1 - C - j D  

where 

2 2 c = (GE + HF) / (E  + F ) 

2 2 
D = (HE - GF)/(E + F ) 

ab b c da 
G = U(cos euc - cos Bud) + W C O S  + Wbc cos e + Uda cos em ab w (135) 

ab bc 
H = U(sin 0 - s i n  0 

da 
Uc + ma,, s i n  ow + ubc s i n  Ow + uda sin Ow (136) 

E = U(cos 0 - cos  0 ab 
Ub Ua ) f uab cos em (137) 

F = U(sin Oub - s i n  0 
ab 

) + uab s i n  Ow 
Ua (138) 

where the complex number general ized works a r e  w r i t t e n  as i n  equat ions (56_B), 
(561) and (565). Note t h a t  C > 0. For t h e  Otto engine the work elements Wuv 
do no t  enter d i r e c t l y  i n t o  the e f f i c i ency  c a l c u l a t i o n s  given by equat ions (132) 
through (138). 

For small va lues  of t h e  i n t e r n a l  phase angles  it fol lows from equat ions 
(560) and (56P) and equat ions (135) thxough (138) that 

F 2. U(Bm - eUa) + Ma, (a, - aa) (142) 

The terms (a,, - a,) must be f i r s t  o rde r  homogeneous functions of (BU,, 2 B U V )  . 
From equation (132) i t  fol lows t h a t  the measured efficiency i s  given by 



t a n  0 = - D/(1 - C) 
rl ( 1 4 6 )  

where C is  given by equat ion (133) .  Because C > 0 it  fol lows t h a t  om < I .  

B. I n t e r n a l  Phase Otto Engine i n  Coherent Spacetime. 

The u l t r a f a s t  coherent hea t  Otto engine uses  a gas of high-T, superconduct- 
ing e l e c t r o n  p a i r s  as a working substance which is  loca ted  i n  coherent spacetime. 
The v a r i a b l e s  and f ixed  q u a n t i t i e s  f o r  t h e  thermodynamic p a t h g i v e n i n F i g u r e - 2 c  a r e  

Variables  Constants 

pa th  ab  ab 
e S , e U , @ p s P s T , e u  S , U , B V  , V y a  (147) 

pa th  bc b c 
@ U , @ p ' P ,  e V , T ,  ea S , U , e S  s v s a  (148) 

pa th  cd 
cd e s ,  e U '  e p , ~ , ~ . e ~ u  s , u , e v  Y V , o :  (149) 

da 
path  da 9 U , @ p , P ,  e V ' T , B c c  S , U y e S  s V r a  (150) 

The work elements f o r  coherent spacetime are given i n  Case C of Section 2. With 
these  changes t h e  preceding a n a l y s i s  can be used t o  c a l c u l a t e  t he  e f f i c i e n c y  
f o r  t h e  case of coherenr thermodynamic func t ions  and coherent spacetime. In 
p a r t i c u l a r ,  equat ions (132) through (143) g ive  the  e f f i c i encyforth i scasepro-  
vided t h e  general ized works Gab , G b c  and Gda are ca l cu la t ed  from equation (67) 
a s  fo l lows  

b 
ii = u 1 fidea ab ab - a = a(Oab - eaa) a 

(1 50A) 
a 

which r e s u l t  i n  equat ions (67C) and (67D) genera l ly  and equations (67G)and (67H) 
s p e c i f i c a l l y  f o r  the  case  of s m a l l  i n t e r n a l  phase angles .  The components of t he  
genera l ized  work elements Gab , Z b c  and Zda given i n  equations (150A) through 
(150C) are used i n  equat ions (135) through (138) t o  c a l c u l a t e  t h e  e f f i c i e n c y  of 
a coherent  spacetime Otto engine f o r  t h e  genera l  case ,  while t he  q u a n t i t i e s  
ab - a a , a c  - ab and a, - ad t h a t  appear i n  equat ions (150A) through (150C) a r e  
used i n  equat ions (139) through (142) t o  c a l c u l a t e  t he  coherent spacetime engine 



e f f i c i ency  f o r  t he  case  of small i n t e r n a l  phase angles .  Thequan t i t i e s  gap - Oav 
must: be f i r s t  o rder  homogeneous func t ions  of BuU -+ BuV. F ina l ly ,  for  an  ultra- 
f a s t  process  i n  coherent spacetime t h e  pressure  can be represented by equat ion 
(60). 

5. ULTRAFAST DIESEL ENGINE. In  t h e  conventional Diese l  engine combustion 
is regula ted  t o  occur a t  a cons tan t  pressure.  In  order  t o  accomplish t h i s  t he  
a i r  temperature i n  t h e  cy l inde r  mst be higher  than the  se l f - ign i t i on  tempera- 
t u r e  of t h e  f u e l .  Therefore a s imp l i f i ed  fou r  phase s t r u c t u r e  of t he  Diese l  
cyc le  i s  shown i n  Figure 3a and c o n s i s t s  o f :  a -t b add i t i on  of hea t  a t  cons tan t  
pressure ,  b + c i s e n t r o p i c  expansion, c + d h e a t  r e j e c t i o n  a t  constant  volume, 
and d + a i s e n t r o p i c  compression. 2-9 The i g n i t i o n  phase i s  a + b and c o n s i s t s  
of cons tan t  pressure  combustion. The f u e l  i s  added l a t e r  a f t e r  t h e  compression 
of air  t o  achieve cons tan t  pressure  combustion. The thermal e f f i c i e n c y  of t h e  
conventional Diesel cyc le  is  given by2-9 

where c = a d i a b a t i c  cons tan t  = 1.4  f o r  i d e a l  gases .  For high compression r a t i o s  
t h e  Diese l  cyc le  is more e f f i c i e n t  than the Otto cycle.  For equal  compression 
r a t i o s  t h e  Otto cyc le  is  more e f f i c i e n t  than the  Diese l  cycle .  

A. I n t e r n a l  Phase Diese l  Engine i n  Incoherent Spacetime. 

This  s ec t ion  desc r ibes  an u l t r a f a s t  Diese l  cyc le  with ord inary  matter  a s  a 
working ma te r i a l .  The v a r i a b l e s  and f ixed  q u a n t i t i e s  f o r  t h e  i n t e r n a l  phase 
Diese l  engine a r e  discerned from Figure 3b f o r  incoherent  spacetime (Case B of 
Sect ion 2)  t o  be 

Variables Constants 

path ab 

bc 
path  bc B ~ , @ ~ , P , V , T , ~  S , U , B S  (154) 

pa th  cd 8 S , 0 U j e p , P , T , a  S , U , Srcd (155) 

pa th  da O U , O p , P , V y T , a  S , U , gda S (156) 

Referr ing t o  Figure 3b, t h e  work done on the  four  pa th  segments of t h e  cyc le  
can be deduced from equat ions ( 4 9 ) ,  (56A) and (56B) t o  be 

b - - 
= j Fdv = Pa, (Vb - Va) 

Wab a 
(157) 



where i s  given by equation (50). The total  work done around the path a b c d a 
i s  given by 

The heat trnasferred during the ultrafast  Diesel cycle i s  obtained from 
Figure 3b and equations (49) and (54) through (56B) to  be 

b b b 
iiab = jS a I T exp(jBS)dBS = jU a I exp(jBU)dOU 4- Pab I- a I edu (162) 

The net heat transferred i s  obtained from equations . ( l62)  through (165) to be 

where i s  given by equation (161). 

The efficiency i s  given by the rat io  of the net work to the input heat,  so  
that equations (161) and (162) give 

where 



= U[exp(jBUc) - exp (j eud) 1 + Gab + lbc + ijda 

- 
B = U[exp(jBm) - exp( jeUa)]  +Cb + Oab 

C = (GE + HI?) / (E2 + 

2 2 D = (HE - GF)/(E + ) 

ab bc da 
G = U(COS e - cos eUd) + Wab cos ew + Wbc COS e + Wda Uc cos  0 

W W 
(172) 

H = U(sin  BUc - sin 0 ~ d )  + uab s i n  eab + w sin ebC + s i n  0 
da 

w . bc w da w (173) 

E = U ( c o s 8  -case ) + wab coa O i b  + w cos  ab 
Ub Ua a b  w (174) 

F = U(sin 0 - s i n  0 
ab  a b  

Ub U a  ) + Wab s i n  9 W + uab s i n  0 w (175) 

with C > 0 , a n d  where the e lements  of work can be w r i t t e n  a s  i n  e q u a t i o n s  ( 5 6 6 )  
through (565). The measured e f f i c i e n c y  is obtained from e q u a t i o n s  (167) t o  be  

where C > 0 from e q u a t i o n  (170).  The i n t e r n a l  phase  a n g l e  and magnitude of t h e  
e f f i c i e n c y  i s  o b ~ a i n e d  from e q u a t i o n  (167) as 

t a n  0 = - D/(1 - C) (177) n 

Note t h a t  t h e  work element iab enters t h e  e f f i c i e n c y  calculation through equa- 
t i o n s  (169), (174) and (175). In t h i s  way t h e  g e n e r a l  e x p r e s s i o n  f o r  t h e  e f f i -  
ciency of the  u l t r a f a s t  D i e s e l  eng ine  o p e r a t i n g  i n  i n c o h e r e n t  spacet ime is  cal- 
c u l a t e d .  

For small i n t e r n a l  phase  angles  i t  f o l l o w s  f r o m  e q u a t i o n s  (56M) through 
(56P) and (172)  through (175) t h a t  



from which t h e  e f f i c i e n c y  i s  ca l cu la t ed  by equat ions (167) through (171). The 
elements Vv - V,, and av - a, must be f i r s t  o rder  homogeneous func t ions  of 
%ill 2 Buv 

B. I n t e r n a l  Phase Diese l  Engine i n  Coherent Spacetime. 

This  i s  t he  case  of an u l t r a f a s t  coherent hea t  Diese l  engine opera t ing  
with a gas of high-Tc superconducting e l ec t ron  p a i r s  that  e x i s t  i n  coherent 
spacetime. For coherent spacetime t h e  va r i ab l e s  and cons tan t  q u a n t i t i e s  are 
obtained from Figure 3c and Case C of Sect ion 2 t o  be 

Variables  Constants 

ab 
path  ab ~ S , ~ U 3  e V y T y e  S , U , P a b s e p  

a 
(183) 

b c 
path  be e U y e p  , P  , e V , T ,  0, s , u , e S  , v , a  (184) 

cd 
path cd  ~ S y ~ U , e p ~ P y T y ~ u  S , U y ~ v  Y V Y ~  (185) 

pa th  da B U Y  e p , P ,  e V s T ~  ea S . , U ,  9 Z a , V , a  (186) 

The a n a l y s i s  f o r  t h i s  ca se  g ives  t h e  same r e s u l t s  as i n  Case A f o r  incoherent 
spacetime except  t h a t  t h e  fol lowing expressions f o r  t he  work elements W,,,, i n  
coherent spacetime are  obtained from equation (66) 

and s i m i l a r l y  t h e  genera l ized  work elements wv,, are given by equat ion (67)  f o r  
coherent spacetime. The e f f i c i e n c y  ca l cu la t ions  i n  equat ions (157)through (182) 
a r e  t h e r e f o r e  v a l i d  f o r  t h e  case  of coherent spacetime i f  t h e  work elements i n  
equat ions (66) through (67H) a r e  used, and i n  p a r t i c u l a r  i f  t h e  following sub- 
s t i t u t i o n s  a r e  made 



The elements BVU - OV, and OaU - 6,, must then be  f i r s t  o rde r  homogeneous func- 
t i o n s  of €IUp 2 Ow a s  can be from equat ions (179) through (182). For an u l t r a -  
fast thermodynamic process  occurr ing i n  coherent spacctime the pressure  is  given 
by equarion (60).  

6 .  ULTRAFAST ERICSSON ENGINE. The Ericsson cyc le  i s  important because i t  
makes use  of a regenera tor  i n  a ho t  a i r  engine t o  h e a t  t h e  air .  A regenerator  
is  a chamber f i l l e d  w i t h  brickwork o r  wi re  mesh w h i c h s e r v e s  t h e  urpose t o  
t r a n s f e r  energy f r o m  a hot  gas and s t o r e  it a t  constanr  The Eries-  
son cyc le  c o n s i s t s  of four  phases a s  shown i n  Figure 4a and which c o n s i s t s  of 
the  following elements: a -t b constant  temperature t r a n s f e r  of heat t o  t h e  en- 
g ine  from an ex te rna l  source,  b + c constant  p re s su re  t r a n s f e r  of hea t  from t h e  
engine t o  t h e  regenera tor ,  c -+ d constant  temperature l o s s  of h e a t  (entropy) t o  
an external s ink ,  and d -+ a constant  pressure  energy r e t r i e v a l  from the  regen- 
e r a t o r .  The thermal e f f i c i ency  of rhe  conventional Ericsson engine i s  given by2-g 

which is  the  same maximum e f f i c i e n c y  assoc ia ted  with the.Carnot  engine. Ericsson 
engines have low mean e f f e c t i v e  pressures  and low temperatures of t he  working 
substance, and cannot compete with modern r ec ip roca t ing  engines which a r e  based 
on t h e  Otto o r  Diesel  cyc les .  These engines are not  used today but  the  cyc le  
is  of h e u r i s t i c  value.  

A .  I n t e r n a l  Phase Ericsson Engine with Incoherent Spacetime. 

This s ec t ion  desc r ibes  an u l t r a f a s t  coherent h e a t  Ericsson engine with or- 
d inary  matter  used as a working substance. A glance a t  Figure 4b f o r  t he  ultra- 
f a s t  Ericsson engine i n  incoherent spacetime shows t h a t  t he  v a r i a b l e s  and fixed 
q u a n t i t i e s  f o r  t h e  var ious  path segments are (Case B o f - S e c t i o n  2) 

Variables  Constants 

path ab 

path bc 

path cd  , U , (196) 

path da 

Figure 4b and equat ions (49) through (56B) give  t h e  hea t  t r a n s f e r s  f o r  t he  path 
segments as fol lows 



- d 
- 

Q , ~  - ~T,--s I exp(jeS)deS = TcdS[exp (j e,,) - exp ( j  esc) 1 
C (200) 

where 

= I (V - Vb) b c 
'bc bc c wbc = pbC(vc - vb) 0% = e, (202) 

- 
Wd, = Fda(Va - Vd) Wda = Pda(V, - Vd) w (203) 

and where 

- - 
Wbc - 'cb 

Wda = - 
%d (204) 

The work elements are obtained using equations (49) through ( 5 6 )  as  
b b 

= I Fdv = j j (TS ae,/av - i ae,lav - P ao1av)dv (205) 
a 

- 
Wda = Pda(va - Vd) (208) 

The pressure for this case is given by equation (50).  The net  work is given by 



These work elements can then be used t o  c a l c u l a t e  e f f i c i ency .  

The Ericsson engine i s  unusual i n  the sense t h a t  h e a t  is  added to the en- 
gine twice during each cyc le ,  once in t he  element ab when h e a t  i s  obtained from 
an e x t e r n a l  source,  and a second time during t h e  path segment da when h e a t  is 
r e t r i eved  from t h e  regenera tor .  The e f f i c i ency  is then w r i t t e n  as , 

where 

- 
A = T c d s [ e x ~  (jest) - e x ~ ( j  1 + U[exp (jBm) - exp ( j  eUc) ] 

2 2  C = (GE f HF)/(E + F ) 

D = (HE - G F ) / ( E ~  + F ~ )  

G = T ~ ~ S ( C O S  eSc - cos e I + U(COS e,ub - cos ellc) - w,~ cos 0 b c 
S d W (216) 

ab da + W COS OW + WCd COS eCd + w C O S  OU ab w da 

H = Tcds(sin BSc - s i n  0 Sd ) + U(sin BUb - sin 0 IJc ) - wbc s i n  0 W bc (217) 

ab cd da + uab s i n  Ow + ucd sin Bw + wda sin Bw 



e = T ~ ( ~ 0 8  oSb - COS 0 ) +  COB 0 - COS Bud) 
ab Sa Ua 

da da + wda cos eW + uda cos e 
W 

F = T ab S(s in  oSb - s i n  8 S a ) + U(sin OUa - s i n  cud) (219) 

da + Wda s i n  OW 
+ 'da s in  

The work terms i n  equat ions (216) through (219) can be r e w r i t t e n  a s  i n  equat ions 
(56G) through (56L). The measured e f f i c i ency  is  given by the  r e a l  p a r t  of equa- 
t i o n  (213) so t h a t  

The i n t e r n a l  phase angle  and magnitude of t h e  complex number e f f i c i e n c y  given i n  
equat ion (213) a r e  obtained from equations (177)  and (178) .  Both &,, and i,,, 
e n t e r  the c a l c u l a t i o n  of t h e  e f f i c i ency  of t h e  Ericsson engine. 

For small  i n t e r n a l  phase angles it  follows from equat ions (56M) through 
(56P) and equat ions (216) through (2 19) t h a t  

and t h e  e f f i c i e n c y  is  ca l cu la t ed  by i n s e r t i n g  these  equat ions into equat ions (214) 
and (220) .  The q u a n t i t i e s  (VF, - V,) and (a,, - a,) must be  f i rs torderhomogeneous 
func t ions  of (OSFi  2 B S v )  and (O,U,, f BUv). Further  s i m p l i f i c a t i o n  occurs if the 



approximation BS = BU i s  made i n  equat ions (221) through (224). 

B. I n t e r n a l  Phase Ericsson Engine i n  Coherent Spacetime. 

The working substance f o r  t h e  coherent spacerime coherent hea t  Ericsson en- 
gine is a coherent spacetime assembly of high-T, superconducting e l ec t ron  p a i r s .  
Figure 4c shows t h a t  the v a r i a b l e s  and f i x e d  q u a n t i t i e s  f o r  t h e  var ious  pa th  
elements are given by 

Vari'ables Constants 

pa th  ab  eS 9 eU ' ep , P , eV 9 ea S , U , T a b , V , a  (225) 

path bc b c eS 9 eU s T ,  e V ,  ecc S , U , P b c , e p  s V s a  (226) 

path cd OS , BU 9 Op I , eV 3 Oa S , U S T ~ ~ , V , ~  (227) 

da path  da e S , B U , T , B V s  Ocr S , U , P d a 9 e p  , V r a  (228) 

For t h e  coherent spacetime case  t h e  work elements ity a r e  obtained from equat ion 
(66) and Figure 4c ro  be a s  follows 

h 

while  t h e  general ized work elements GUY f o r  coherent  spacetime a reg ivenbyequa -  
t i o n  - (67) .  The pressure  i s  given by equat ion (60).  With t h e  replacements of 
Wyu and Gv, with  t h e i r  coherent va lues  a s  i n  equat ions  (67A) through (67H), 
equat ions (198) through (224) can be used t o  c a l c u l a t e  the e f f i c i ency  of an in-  
t e r n a l  phase Ericsson engine f o r  coherent spacetime. The q u a n t i t i e s  (BVP - eVv) 
and (8,v - e,,,) must be f i r s t  o rder  homogeneous func t ions  of (aU,, t OUu) and 
(Qs,, 2 OSV)  ' 

7 .  ULTRAFAST STIRLING ENGINE. The S t i r l i n g  cyc le  was f i r s t  introduced a s  
t h e  b a s i s  of a ho t -a i r  engine and uses  a regenera tor  t o  h e a t  the working sub- 
s tance .  A s  shown in  Figure 5a t h i s  cyc le  c o n s i s t s  of four  pa r t s :  a + b i so the r -  
m a l  absorp t ion  of hea t  from an e x t e r n a l  r e s e r v o i r  a t  high temperature, b + c 
cons tan t  volume r e v e r s i b l e  r e j e c t i o n  of hear  t o  a regenera tor ,  c + d isothermal  
r e j e c t i o n  of h e a t  t o  an ex te rna l  energy r e s e r v o i r  a t  low temperature, and d =+ a 
cons tan t  volume r e v e r s i b l e  absorpt ion of hea t  from a regenera tor .  The e f f i c i e n -  
cy of t h e  conventional S t i r l i n g  cyc le  is given by2-' 



which, a s  i n  t h e  Carnot engine, i s  the  maximum poss ib l e  va lue  of t h e  e f f i c i e n c y  
f o r  conventional hea t  engines.  Like t h e  Ericsson engine, t h e  S t i r l i n g  engine 
has l o w  mean e f f e c t i v e  pressure  and a low working substance temperature and is 
no t  a p r a c t i c a l  source of power compared t o  t he  i n t e r n a l  combustion engines.  
They a r e  no t  used today f o r  any commercial purposes. 

A. I n t e r n a l  Phase S t i r l i n g  Engine with Incoherent Spacetime. 

Consider now an ul t rafast :  S t i r l i n g  engine whose working s u b s t a n c e i s o r d i -  
nary matter .  From 5b it i s  c l e a r  t h a t  t h e  v a r i a b l e s  and cons tan ts  f o r  each 
path segment of t h e  u l t r a f a s t  S t i r l i n g  engine i n  incoherent spacetime (Case B 
of Sect ion 2 )  a r e  given by 

Var iab les  Constants 

path ab B ~ , ~ ~ , B ~ ~ P , V , ~  S U: Tab (234.)  

path bc S , U r V b c  (235) 

path cd e S y O U , O p , P y V , a  S , U Ted (236) 

path da '  O S , B U , e p , P , T , a  S , U Vda (237) 

From equat ions (49) through (56B) and Figure 5b i t  fol lows t h a t  t h e  h e a t  t r ans -  
fers f o r  t h e  var ious  path segments a r e  

b 

Both Gab and od, correspond t o  t h e  absorpt ion of hea t .  

The work elements a r e  obtained from equat ions (49) through (56) t o  be 



- va, = Ta,s[ex~(je,,) - exp(jes,)l -u[exp(jeub) - exp(jeUa)] - wab (242 )  

- 
Wbc = 0 ( 2 4 3 )  

- 
Wcd = TcdS[exp(jBSd) - exp(j egc) 1 - U[exp(j cud) - exp(j eu,) ] - GCd (244) 

ijda = 0 ( 2 4 5 )  

The net work is given by 

i j= i  
ab + %c + 'cd + 'da (246)  

- - - - - - oab + Qbc + hcd + !da - Wab - ubc - ucd - w da 

= TabS[exp(jeSb) - exp(jes,) I + TcdS[exp(je,,) - exp(jeSc) 1 

- - u[exp(jem) - exp(jeua)l - U[exp(jOUd) - exp(jBUc)] - Gab - w c d 

Then the efficiency is given by 

R - a (Gab + qda) = 1 - x / i  ( 2 4 7 )  

= 1 - (G + jH)/(E + jF) 

= l - C - j D  

where 

= Tc,s[ex~(j@,c) - exp(jesd)l + U[exp(jea) - exp(jOuc)l (248) 

+ 'ab 4- icd f Zda 

C = (GE + IIF) / (E' 4- F ~ )  

2 2 D = (HE - GF)/(E 4- F ) 

G = T S(COS BSc - cos BSd) + U(COS 0 - cos BUC) - 
c d  Ub (252) 

ab + Wab cos 0 + w cos ecd + w cos 0 
da 

w c d w da w 



H = T S ( s i n  0 - sin BSd) + U(sin Om - s i n  Out) cd Sc 

ab 
f uab s i n  0 + ucd s i n  0 

cd da 
W 

+ uda s in 9 
W W 

' T ab S ( s in  eSb - s i n  0 S a ) + U(sin BUa - s i n  Bud) + uda s i n  gw da (255) 

The general ized work elements can be w r i t t e n  a s  i n  equat ions (561) and (565). 
The measured e f f i c i e n c y  is  given by 

The work elements iv, do not  d i r e c t l y  e n t e r  t h e  c a l c u l a t i o n  of t h e  e f f i c i e n c y  of 
the S t i r l i n g  engine as given by equat ions (247) through (255). 

The small i n t e r n a l  angle approximation for t h e  e f f i c i e n c y  can be ca l cu la t ed  
by using equat ions (560) and (56P) and not ing  t h a t  f o r  t h i s  ca se  equat ions (252) 
through (255) become 

Then t h e  e f f i c i e n c y  is ca l cu la t ed  using equations (247), (250), (251)and (2558). 
Again, the q u a n t i t i e s  (au - a") must be first order  homogeneous func t ions  of 
(OSU ?: BSv) and + Fuv) ' " 

B. I n t e r n a l  Phase S t i r l i n g  Engine wi th  Coherent Spacetime. 

The coherent spacetime coherent hea t  S t i r l i n g  engine uses  a gas of high-Tc 
superconducting e l e c t r o n  p a i r s  f o r  a working substance. Figure 5c shows t h a t  
t he  v a r i a b l e s  and cons tan ts  f o r  each of t h e  path segments f o r  t h i s  type of en- 
gine (Case C of Sect ion 2) a r e  given by 



Variab les  Constants 

pa th  ab B S  3 eU s ep 3 P , eV 9 ea S y U , T a b , V y a  (260) 

bc path bc e S ,  g u y  o p , p , ~ ,  oa s , U , B V  , V , a  (26  1) 

path cd O S s O U , e p y P ,  O v y e  a S , U , T c d , V , a  (262) 

da path d a  BS , eU , ep 'P , T 9 ea S , U r Q V  , V , a  (263) 

The general ized work elements GUY f o r  t h e  c a s e  of coherent spacetime a r e  given 
by equat ions (67),  ( 6 7 0 ,  (67D), (67G) and (67H) and when these  r e s u l t s  a r e  sub- 
s t i t u t e d  i n t o  equat ions (238) through (259) t hese  equat ions give t h e  e f f i c i e n c y  
f o r  the i n t e r n a l  phase S t i r l i n g  engine f o r , c o h e r e n t  spacetime. For this case  
a,, - au = a(BcrP - Bau) 'and t he  q u a n t i t i e s  (gap - 0,,) must be f i r s t  o rder  homo- 
geneous func t ions  of (BU,, t BUv) and (Bs,, 2 0sv)  . 

8. ULTRAFAST BRAYTON ENGINE. The Brayton (Joule)  engine is  a two cy l inde r  
engine, one used f o r  compression and the o t h e r  used f o r  complete expansion of - 
t h e  p o d u c t s  t o  atrnosphe;ic pressure .  2-9 The Brayton cyc le  c o n s i s t s  of two con- 
s tan t  pressure  processes  and two i s e n t r o p i c  processes  as shown i n  F igure  6a. 
More s p e c i f i c a l l y  t h e  cyc le  c o n s i s t s  of :  a + b cons tan t  pressure  add i t i on  of 
h e a t ,  b + c i s e n t r o p i c  expansion, c -+ d cons tan t  pressure  r e j e c t i o n  of h e a t ,  
and d -t a i s e n t r o p i c  compression. The e f f i c i e n c y  of the conventional Brayton 
cyc le  is  given a s  fol lows 2-9 

where h = s p e c i f i c  enthalpy given by 

The Brayton cyc le  is  used i n  gas t u rb ines  and, j e t  engines with a compressor, 
combustion chamber and tu rb ine ,  although t h e  o r i g i n a l  Brayton engine was re-  
ciprocating. The mean e f f e c t i v e  pressure  is l o w  f o r  t he  Brayton cyc le  and 
the re fo re  t he  Brayton engine i n  imprac t ica l .  

A. I n t e r n a l  Phase Brayton Engine f o r  1ncoheren.t Spacetime. 

The u l r r a f a s t  Brayton engine with ord inary  matter for a working substance 
is  t r e a t e d  i n  t h i s  s ec t ion .  Figure 6b shows t h a t  t h e  u l t r a f a s t  Brayton cyc le  
f o r  incoherent spacetime has the following v a r i a b l e s  and f ixed  q u a n t i t i e s  for 
each path segment of the  cycle  (Case B of Sec t ion  2 )  



V a r i a b l e s  Cons tan t s  

p a t h  ab  B S , e U , V , T , a  S , U y P a b s  ef (266) 

p a t h  bc e U , e p l P , V y T , a  S , U , B S  bc (267) 

p a t h  cd @ S I e U , V , T y a  S u , Pcd y Bp cd (268) 

p a t h  da e U y e p , P y V , T , a  S , U , e S  da  ( 2 6 9 )  

The h e a t  t r a n s f e r  f o r  each p a t h  segment is  ob ta ined  from Figure 6b and equa- 
tions (49) through (5613) t o  be  

- b b b b 
Q,, = j J ~ B d e ~  = jU J exp( jeU)deU + J Fdv + J Ida 

a a a a 
(27'3) 

= u[exp ( j e a )  - exp (j eUa) 1 + iab + iab 

where for c o n s t a n t  p r e s s u r e  and i n c o h e r e n t  spacet ime t h e  work e lements  are 
given by 

The work done f o r  each p a t h  segment is ob ta ined  from e q u a t i o n s  (49) through 
(56) to be 

- - 
Wab = Pab(V,, - Val  (276) 

- 
= U[exp ( jeub)  - exp (j eUc) 1 - wbc 



The pressure for an ultrafast  process i n  incoherent spacetime i s  given by equa- 
tion (50). The net usable work done during the cycle is written a s  

ii - ijab iibc + icd + iida (280) 

- - - - - - - Qab + Gbc + Gcd + Gda - Wab - Wbc - Wed - Wda 

= U[exp(je,) - exp(jeUa) 1 + U[exp(j Bud) - exp(j eU,) 1 

- - + ijab C iid - Obc - W da 

The net work can be  used t o  calculate engine ef f ic iency.  

The efficiency i s  given by 

= / = 1 - 1T/B 

where 

- 
= U[exp(jeU,) - e ~ p ( j f + , ~ ) l  - Wed + lab + ijbc + w' da 

P = U[exp(jBm) - exp(jeua)] + ijab + Eab 

Then the efficiency can be written as 

where 

2 2 c = (GE + HF)/(E + F ) 

2 2 
D = (HE - GF)/(E + F ) 

H = U(sin BUc - s i n  Bud) - Wed sin 8id + w s i n  0 
ab 

ab w 

+ w s i n  obC + s i n  6 da 
b c w da w 



E = U(COS eUb - cos eUa> + wab C O S  eab + C 0 8  e ab W W 

ab 
P = U(sin BUb - sin BUa) -I- Wab s i n  9 + dab s i n  9 ab W W (290) 

The work elements f o r  incoherent  space a r e  given by equat ions (56G) through 
(56L). The measured e f f i c i e n c y  i s  given by 

Note t h a t  0 < C < 1 f o r  phys ica l  systems. A s  shown by equat ions (281) through 
(291) both work elements gpv and genera l ized  work elements GV, e n t e r  directly 
i n t o  t he  c a l c u l a t i o n  of t h e  e f f i c i e n c y  of t h e  Brayton engine. 

For s m a l l  va lues  of t h e  i n t e r n a l  phase angles  of t h e  thermodynamic func- 
t i o n s  t h e  engine e f f i c i e n c y  can be ca l cu la t ed  by using equations (56M) through 
(56P) and equat ions (287) through (290) w i t h  t h e  r e s u l t  t h a t  

where Pab and PC- a r e  cans t an t s .  The e f f i c i e n c y  is  then ca l cu la t ed  using equa- 
t i o n s  (284) through (291). A s  before  t h e  q u a n t i t i e s  (V - Vy) and (au - a,) 
must be f i r s t  o rder  homogeneous func t ions  of (@up ? oUv!. 

B. I n t e r n a l  Phase Brayton Engine f o r  Coherent Spacetime. 

The working substance f o r  t he  coherent  spacetime vers ion  of t h e  u l t r a f a s t  
coherent hea t  Brayton engine is  a gas of high-Tc superconducting e l e c t r o n  p a i r s .  
From Figure 6c i t  fol lows t h a t  t h e  v a r i a b l e s  and cons tan ts  f o r  each path segment 
of t h i s  type of engine cyc le  a r e  given by (Case C of Sect ion 2)  



Variables  Constants 

ab 
path ab BS y BU Y T , oV s Ba S , U , P a b y O p  , V , a  (296) 

path  bc 
bc 

O U , O p y  P , T  , eV. , ec r  S y U , e S  , V , a  (297) 

cd 
pa th  cd eS  , B U " L  e V Y e a  S y U y P c d y O p  , V , a  (298) 

pa th  da da 
O U , O p , P , T , @ V , e a  S , U r O S  , V , a  (299) 

The work elements Wuv and the  general ized work elements Euv f o r  coherent space- 
rime a r e  obtained from equat ions (66) and (67) respec t ive ly .  The work elements 
. t ha t  e a t e r  d i r e c t l y  i n t o  t h e  c a l c u l a t i o n  of t h e  engine e f f i c i e n c y  through equa- 
t i ons  (237) through (290) a r e  f o r  coherent spacetime now given by 

where Fab and Pcd a r e  cons tan ts  which may be obtained from equat ion (60).  The 
elements of genera l ized  work a r e  wr i t t en  a s  

- 
where fiab , Mbc and fida a r e  average values over t h e  r e spec t ive  path segments. 
With these  changes, as i n  equat ions (67A) through (67H), t h e  s e t  of equat ions 
(270) through (295) can be used t o  c a l c u l a t e  t he  e f f i c i ency  of t h e  u l t r a f a s t  
coherent h e a t  Brayton engine f o r  coherent spacetime. The terms BVu - eVLl and 
OaU - €la, must be f i r s t  o rde r  homogeneous func t ions  of 0~~ 0 u V .  

9 .  CONCLUSION. It is poss ib l e  i n  theory t o  develop c y c l i c  engines t h a t  
convert h e a t  i n  t h e  form of i n t e r n a l  phase (coherent h e a t )  i n t o  u s e f u l  e x t e r n a l  
work. I f  o rd inary  matter  i s  used a s  a working substance then the  r o t a t i o n  of 
the  entropy and i n t e r n a l  energy vec to r s  i n  i n t e r n a l  space can produce a pres- 
sure  and a change i n  t h e  magnitude of the  volume of space t h a t  conta ins  t h e  
matter. A simple mechanical analogy of t h i s  e f f e c t  i s  t h e  volume change and 
pressure c r ea t ed  by the  shearing of a granular  material . ' '  I f  t h e  working sub- 
s tance  of t h e  engine is a gas  of high-Tc superconducting Cooper e l e c t r o n  pairs  
t h a t  move i n  coherent spacetime, then the t r a n s f e r  of i n t e r n a l  phase energy and 
i n t e r n a l  phase entropy dur ing  an engine cycle  must be accompanied by a change 
i n  t h e  i n t e r n a l  phase angles  of t h e  spacetime coordinatses w i ~ h i n  t h e  working 
chamber. In  o the r  words, the  working chamber volume w i l l  be sheared (at con- 
s t a n t  volume magnitude) i n  space and time during the  opera t ion  of t h e  engine, 
and a pressure  and ex te rna l  work w i l l  be developed. This coherent spacetime 



coherent hea t  engine is  i n  f a c t  a p r a c t i c a l  example of vacuum engineering.  The 
engineered vacuum has a l ready  been discussed i n  p a r t i c l e  physics.' ' U l t r a f a s t  

. coherent h e a t  engines opera te  wi th in  the limits of the first and second laws 
of thermodynamics and have measurable e f f i c i e n c i e s  t h a t  a r e  always l e s s  than 
un i ty .  The low work output  per  cyc le  of t hese  engines may be compensated by 
t h e i r  u l t r a f a s t  na tu re  which may produce high power outputs .  The u l t r a f a s t  
cyc l e s  considered i n  t h i s  paper may be appl icable  t o  t h e  dynamic p r o c e s s e s t h a t  
occur i n  t h e  i n t e r a c t i o n  of molecules with u l t r a f a s t  l i g h t  pulses.1 g-22  These 
cycles  may a l s o  have app l i ca t ion  t o  t h e  study of t h e  energeticsofthermodynamic 
processes  a s soc i a t ed  w i t h  t he  storage and r e t r i e v a l  of information i n  t h e  mem- 
o r i e s  of high speed supercomputers. 

ACKNOWLEDGEMENT 

The author  would l i k e  t o  thank Elizabeth K. Klein f o r  typing t h i s  paper.  

REFERENCES 

1 .  Duncan, J . ,  Steam and Other Engines, MacMillan, New York, 1909. 

2. Mackey, C .  O . ,  Barnard, W. N .  and Ellenwood, F. O., Engineering Thermodyn- 
amics, John Wiley, New York, 1957. 

3. Keenan, J. H., Thermodynamics, John Wiley, New York, 1941. 

4. Schmidt, E . ,  Thermodynamics, Oxford Univ. Pres s ,  New York, 1949. 

5. FernaLd, E. M., Elements of Thermodynamics, McGraw-Hill, New York, 1931. 

6.  Hayes, A. E. J . ,  Applied Thermodynamics, Pergamon, New York, 1963. 

7 .  K ie fe r ,  P. J., Kinney, G. F. and S t u a r t ,  M. C . ,  P r i n c i p l e s  of Engineering 
Thermodynamics, John Wiley, New York, 1954. 

8. F a i r e s ,  V. M.,  Thermodynamics, MacMillan, New York, 1962. 

9 .  D o o l i t t l e ,  J. S.  and Zerban, A. H., Engineering Thermodynamics, In te rna t ion-  
a l  Textbook Co., Scranton, 1962. 

10. Cambell, A. S . ,  Thermodynamic Analysis of Combustion Engines, Krieger Pub- 
l i s h i n g  Co., New York, 1985. 

11. Weiss, R.  A , ,  R e l a t i v i s t i c  Thermodynamics, Exposi t ion Press ,  N e w  York, 1976. 

12. Weiss, R. A , ,  Gauge Theory of Thermodynarn.ics, K&W Publ ica t ions ,  Vicksburg, 
MS, 1989. 

13. P rand t l ,  L. and T i e t j e n s ,  0. G . ,  Applied Hydro- and Aeromechanics, Dover, 
New York, 1934. 

14. Birkhoff ,  G . ,  Hydrodynamics, Dover, New York, 1950. 



15. Salmel in ,  R. H . ,  Salomaa, M. M. and Mineev, V.  P., " I n t e r n a l  Magnus E f f e c t s  
i n  S u p e r f l u i d  3 ~ e - ~ , "  Phys. Rev. L e t t . ,  63, 868, 2 1  Aug. 1989. 

16. Davis ,  R. L . ,  "Quantum Turbulence," Phys. Rev .  L e t t . ,  64,  2519, 21 May U990. 

17. Onoda, G. Y. and L i n i g e r ,  E. G . ,  "Random Loose Packings  of Uniform Spheres 
and t h e  D i l a t a n c y  Onset," Phys. Rev. L e t t . ,  64, 2727, 28 May 1990. 

18. Lee, T.  D . ,  P a r t i c l e  Physics  and I n t r o d u c t i o n  to F i e l d  Theory, Harwood 
Academic Publishers, New York, 1981. . 

19. Fork,  R. L . ,  Avramopoulos, H. and ~aldmanis, J.  A , ,  " U l t r a s h o r t  L i g h t  
P u l s e s , "  Anierican S c i e n t i s t ,  78, 216, May-June 1990. 

20. Binder, R.,  Koch, S .  W . ,  Lindberg,  M. and Peyghambarian, N.,  " U l t r a f a s t  
A d i a b a t i c  Following i n  Semiconductors," Phys. Rev. L e t t . ,  65, 899, 13 Aug 1990. 

21. Zewai1,-A. H. ,  "The B i r t h  of  Molecules," S c i e n t i f i c  American, 76, Dec. 1990. 

22. Grinberg,  A. A., "Nonstationary Quas iper iod ic  Energy D i s t r i b u t i o n  of an 
E l e c t r o n  Gas upon Ultrafast Thermal E x c i t a t i o n , "  Phys. Rev. L e t t . ,  65, 1251, 
3 Sept. 1990. 



v 
Figure la. Standard Carnot cycle. 
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Figure lb. Internal phase Carnot cycle 
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Figure 2a. Standard closed Otto cycle. 
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Figure 2b. Internal phase Otro cycle 
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Figure 3a. Standard Diesel cycle. 
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Figure 4a. Standard Ericsson cycle. 
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Figure 4c. Internal phase Ericsson cycle for coherent spacetime. 
Note, Vm = V cos 8,. 
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Figure 5a. Conventional Stirling 
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Note, P,,, = P cos 8,. S,,, = S cos 8,. 
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Figure 6a. Conventional Brayton cycle. 

Figure 6b. Internal phase Brayton cycle for incoherent spacetime. 
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Figure 6c. Internal phase Brayton cycle for coherent spacetime. 
Note, V, = v cos 0,. 
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ABSTRACT. A c a l c u l a t i o n  of t h e  e f f e c t s  of a  g r a v i t a t i o n a l  f i e l d  on t h e  
s t a t e  equations of r e a l  ma te r i a l s  i s  presented. The e f f e c t s  a r i s e  f romthebro-  
ken sy&etry of t h e  spacetime coordinates  of t h e  region i n  which t h e  g rav i ty  
f i e l d  is located.  The form of t he  laws of thermodynamics f o r  matter  loca ted  
i n  a gravi ty  f i e l d  i s  inves t iga t ed  by applying ,the broken spacetime symmetry 
forms of the  f i r s t  and second laws of thermodynamics. I n  a  g rav i ty  f i e l d  t h e  
laws of thermodynamics a r e  dependent oa t he  i n t e r n a l  phase angles  Or(r) of t he  
r a d i a l  coordinates  of a  g r a v i t a t i n g  mass, and t h i s  dependence can a l s o  be ex- 
pressed i n  terms of t he  g r a v i t a t i o n a l  constant  Gr(r) whose va lue  depends on ra- 
d i a l  d i s tance .  In  t h i s  way the e f f e c t s  of a  g rav i ty  f i e l d  on t h e  s t a t e  equa- 
t i o n s  of r e a l  gases ,  s o l i d s  and quantum l i q u i d s  is determined. TheDebyetheory 
of s o l i d s  i s  general ized t o  include the  case of a s o l i d  loca ted  i n  a g rav i ty  
f i e l d .  This paper sugges ts  thermodynamic measurements t h a t  can be used t o  de- 
termine Gr(r) f o r  a p lane tary  g r a v i t y  f i e l d .  Because the  i n t e r n a l  phase angles  
of t he  r a d i a l  coordinates  are r e l a t e d  t o  t h e  photon r e d s h i f t  i n  a g rav i ty  f i e l d ,  
i t  is  suggested t h a t  t h e  photon r e d s h i f t  may be used t o  determine t h e  v a r i a t i o n  
of Gr(r) with r a d i a l  d i s t ance .  The s e n s i t i v i t y  of the  s t a r e  equat ions of m a t -  
t e r  t o  an ambient g r a v i t y  f i e l d  suggests  t h a t  t h e  s t a t e  equat ions of matter  i n  
astronomical compact o b j e c t s  may be considerably d i f f e r e n t  from conventional 
pred ic t ions .  

1. INTRODUCTION. Gravi ta t ing  matter appears i n  the  formof ga l ax ie s ,  s t a r s  
and p lane ts .  S t a r s  a r e  g r a v i t a t i n g  systems of gases such a s  hydrogen, helium 
and smaller amounts of heavier  elements.  The inner  p lane ts  are composed of 
s o l i d s  with l i q u i d  co re s ,  while  t he  outer  p lane ts  a r e  gaseous with l i q u i d  cores .  
The s t a b i l i t y  of these  systems r e s u l t s  from a balance of the  outwardly d i r ec t ed  
pressure and the  inwardly d i r e c t e d  Newtonian g r a v i t a t i o n a l  fo rce .  This is 
t r u e  a l s o  i n  general r e l a t i v i t y  theory a s  described by the Tolman-oppenheimer- 
Volkoff equations. ' O" The p o s s i b i l i t y  of non-Newtonian e f f e c t s  i n  g rav i ty  has  
a l s o  been considered and searches f o r  these smaller co r r ec t ions  t o  Newtonian 
g rav i ty  a r e  s t i l l  i n  progress .  1 3 - *  An explanat ion of the apparent non-Newtonian 
behaviour of g rav i ty  has  been given i n  terms of broken spacetime symmetries 
which can be r e l a t e d  t o  t he  skewed na ture  of pressure  i n  an i n t e r n a l  space. 2 7 

The broken symmetries of spacetime and pressure suggest t h a t  t he  measured grav- 
i t a t i o n a l  constant  of t h e  g r a v i t y  f i e l d  of a p lane t  o r  s t a r  should va rywi th  t h e  
r a d i a l  d i s tance  from the  cen te r  of a g rav i t a t i ng  body.*' This paper suggests 
t h a t  a determination of t h e  g r a v i t a t i o n a l  constant  G,( r )  f o r  t h e  e a r t h  can be 
made from simple thermodynamic measurementsthat areperformedon s o l i d s ,  l i q u i d s  
and gases a t  var ious r a d i a l  d i s t ances  from the  e a r t h ' s  cen ter .  I n  add i t i on ,  t h e  
broken spacetime symmetry in  a g r a v i t y  f i e l d  suggests  t ha t  Gr(r) can be de t e r -  
mined from photon xedsh i f t  measurements. 

It has been suggested t h a t  spacetime has a  broken symmetry and t h a t  space 



and time coordinates  have i n t e r n a l  phase angles as soc ia t ed  with them and can be 
w r i t t e n  a s  complex numbers i n  t he  following manner27 

- j ex - j O Z  - 
x = xe 7 = p j e y  2 = ze t = tejet (1 

For s p h e r i c a l  coordinates  the complex number s p a t i a l  coord ina tes  are written as2' 

- - 
r = re j ij = $eJ e$ + = rneje@ (2) 

Then a volume element can be w r i t t e n  as 

= vejev 

and the d i f f e r e n t i a l  change of the volume element i sz7 

d6 = ejev(dv + jVdBV) 

Equation (4) can a l s o  be w r i t t e n  as 

d t  = ej(O~+&IV) set B~ dv = e ('v+~w) csc BW VdeV (5) 

tan = vaev /aV ( 6 )  

The magnitude of a volume element i n  a g r a v i t a t i o n a l  f i e l d  can be  written as2' 

vG = J 1 d f  1 = Jsec B~ d~ = Jcsc  B~ vdeV ( 7 ~ )  

% V sec BVV BW % 0 (7B) 

fb ve c sc  Bw % 2. 7112 ( 7 0  v 

where t h e  approximation i n  equat ion (7B) holds  f o r  incoherent  space and the ap- 
proximation i n  equation (7C)  holds  for coherent space. F o r c a r t e s i a n  coordinates  
t h e  volume element i s  ? * 

dq = didFdZ dV = dxdydz V = ldxdydz (8) 

d V ~  
= l d t l  = sec $x sec f3 sec B z z  dxdydz 

Y Y 
( 9 )  

= sec Bxx sec B sec B z z  dV 
YY 

= csc  Bxx  csc .B csc BZZ xyz dexde doZ 
YY Y 

where 

t a n  B~~ = xaex/ax t an  8 = yae /ay can 8 Z Z  = zaez/az (10) 
YY Y 

The funct ions  of p x x ,  Byy , fizz and BW can depend on the spatial coordinates  o r  
be func t ions  only of the l o c a l  dens i ty  as i n  the case of the approximations i n  

' equat ions (7B) and (7C). 



For sphe r i ca l  po lar   coordinate^^^ 

dV = F~ s i n  5 d$ d f  s i n  $ = s e j es+ Q 
From equat ions (2), (5) and (11) it fol lows t h a t  

2 
dVG = sec  B sec  t3 s ec  err r S d$d@dr 

$JI 4 4 9 

= s e c  BW dV 

2 
= csc  B csc  B csc Brr r S $$r dB dB dB 

$$ $4 JI r C 1 9 r  

= csc  BW VdeV 

where f o r  symmetrical space 

dV = r2 s i n  yl d$d$dr 
2 

V = ,fr s i n  $ d$d$dr 

and where2 

2 2 = [sin ($ cos 9 ) + s i n h  (+ s i n  0 ) ]  112 s+ $ JI 
t a n  0 = co t  (@ cos 0 ) tanh ($ sin 8$) 

s$ '4 
t a n  6 = $a9$lao 

9'4 
t a n  6 = $ae$la+ + $ 

can Brr = r a e r / a r  (17) 

For sphe r i ca l  symmetry 

For a g r a v i t a t i n g  system wi th  matter loca ted  in,  broken symmetry spacetime 
the pressure  has an i n t e r n a l  phase angle and is  w r i t t e n  i n  the following complex 
number f orm2 

The i n t e r n a l  phase angle of the pressure is r e l a t e d  t o  t h e  i n t e r n a l  phase angle  
of the r a d i a l  coord ina te  by the  following small angle approximation27 

For a p a r t i c l e  l oca t ed  i n  a  g r a v i t a t i o n a l  f i e l d  t he  i n t e r n a l  phase angle of t he  
time and space coordinates are r e l a t e d  

so t h a t  t h e  i n t e r n a l  phase angle  of the  time i n t e r v a l  a s soc i a t ed  wi th  a n  event 
o r  process  occurr ing i n  a g r a v i t a t i o n a l  f i e l d  is  given by 2 9 



From.equations (6), (18) and (20) it follows that under the approximation of 
spherical symmetry 

tan B~ Q tan Brr = raer/ar 

% - 1/2 ra/ar[ep + p(ae,/ar)/(aP/ar)i 

Note that in general 0, = er(nrT),Bp = Bp(n,T) and P = P(n,T) where for a 
planet or star the particle number density and temperature depend on the radial 
distance from the cenrer of the object in the manner n = n(r ,$,q)  and 
T a T(r,$r+) respectively. Therefore by the chain rule of differentiation 

where 

where for planets and stars a < 0 and u < 0 generallyr and for the solid earth 
and for the earth's atmosphere (low to medium temperature real gas) 27 

er < 0 ep > o ae /ar > 0 aep/ar < o r (27A) 

Combining equations (20), (22) and (23) with equations (24) through (26) gives 

e r - - l/2[ep + ~(unae~lan + p~ae~la~)/(~na~/an + UT~P/~T)] (28) 

e . - 3/4[ep + P(onaep/an c u~a8~/a~)/(una~lan + u~apla~)] 
t (29) 

tan BW 2. tan Br, = anaer/an + pTaB,/a~ (30) 

Substituting equation (28) into equation (30) gives 

tan f3 
% 'rr 

- - 
rr 

- 1/2[o(A f B + C - D) + p(E + F 4- G - H)] (31) 

where 

A = naep/an 



and where 

A t  t h e  e a r t h ' s  su r f ace  Br % - 5.7" and B t  % - 8.6O . 2 7 , 2 9  By taking both terms 
on t h e  r i g h t  hand s i d e  of equat ion (20) t o b e e q u a l i t f o l l o w s t h a t ' 0 p  ?.-6, % 5.7". 

This paper determines t h e  e f f e c t s  of a g rav i ty  f i e l d  on t h e  s t a t e  equat ions 
of gases ,  l i q u i d s ,  s o l i d s  and quantum l i q u i d s .  The e f f e c t s o c c u r b e c a u s e  g rav i ty  
induces i n t e r n a l  phase angles  i n  the space and t i m e  coord ina tes ,  volumeandpres- 
s u r e  which a r e  used t o  cha rac t e r i ze  matter. B r i e f l y  t h e  paper is organized as 
follows: Sect.ion 2 cons iders  t he  general  e f f e c t s  of a g r a v i t y  f i e l d  on the  laws 
of thermodynamics, Sect ion 3 s t u d i e s  t he  r e l a t i o n s h i p  of g r a v i t y  and the broken 
symmetry of space,  Sect ion 4 i nves t iga t e s  t he  s p e c i f i c  e f f e c t s  of g r a v i t y o n t h e  
s t a t e  equat ion of r e a l  gases ,  Sect ion 5 determines t h e  e f f e c t s  of a g rav i ty  
f i e l d  on t h e  s t a t e  equat ions of s o l i d s  and quantum l i q u i d s ,  and f i n a l l y  Sect ion 
6 a s c e r t a i n s  t h e  s t r u c t u r e  of the Debye theory of s o l i d s  l oca t ed  i n  a g rav i ty  
f i e l d  . 

2. THERMODYNAMICS OF MATTER IN A GRAVITY FIELD. This s ec t ion  t r e a t s  t h e  
b a s i c  rhermodynamic formalism t h a t  descr ibes  matter  in  a broken symmetry space- 
time. The thermodynamic r e l a t i o n s  t h a t  a r e  der ived i n  t h i s  s ec t ion  w i l l  be 
used i n  Sec t ions  4 through 6 t o  descr ibe  the  e f f e c t s  of g rav i ty  on t h e  s t a t e  
equat ions of r e a l  gases ,  s o l i d s  and quantum l i q u i d s .  These ca l cu la t ions  a l s o  
desc r ibe  manmade broken symmetry s t a t e s  of t h e  vacuum t h a t  may be induced i n  
t he  labora tory  using electromagnet ic  f i e l d s .  The gauge i n v a r i a n t  and conformal 
i n v a r i a n t  r e l a t i v i s t i c  t r a c e  equat ion f o r  matter  in  a broken symmetry spacetime 
t h a t  is, induced by a g rav i ty  f i e l d  is  2 7 , 2 9  

-a 
where nG and UG a renormalized and unrenormalized i n t e r n a l  energy r e spec t ive ly  
of a body loca t ed  i n  a g rav i ty  f i e l d ,  FG and PE = renormalized and unrenormal- 
ized  pressure  r e spec t ive ly  of  matter  loca ted  i n  a g r a v i t y  f i e l d ,  and where 
VG = volume of mat te r  i n  broken symmetry space due to a g r a v i t y  f i e l d  and given 
by equat ion (7) .  The unrenormalized i n t e r n a l  energy is assumed t o  be a f f e c t e d  
by a g r a v i t y  f i e l d  only by the  add i t i on  of a constant  term which may be taken 
t o  be zero s o  t h a t  

-a, 
where U and F~ = unrenormalized energy dens i ty  and pres su re  r e spec t ive ly  f o r  
matter  i n  t h e  absence of a g rav i ty  f i e l d .  Thus the  e f f e c t  of a g rav i ty  f i e l d  
on the source t e r m  on t h e  r i g h t  hand s i d e  of equat ion (41) comes e s s e n t i a l l y  



through the broken symmetry volume element VG. The first and second laws of 
thermodynamics for the broken symmetry space associated with a gravity field 
are written as2' 

= df + F sec BW dV + KG sec Baa do. G G 

where BvV is given in equation (5) while B,, is given by 

tan B,, = aaea/aa daG = Ida1 = sec B,, da ( 4 4 )  

where q = generalized coordinate, a~ = generalized coordinate of matter in a 
gravity figld, & and = two representations of the complex number generalized 
force and FG and gG = two representations of the complex number pressure of mat- 
ter in a gravity field. In analogy to equation (3) the generalized coordinate 
is written as 

From equation ( 4 3 )  and neglecting the generalized force it follows that 

Using equation (7) allows equations ( 4 6 )  through ( 4 8 )  to be rewritten as 

The corresponding symmetrical space equations, which are valid in the absence 
of a gravitational field and in the absence of any structurally induced broken 
spacetime symmetry, are written as 

The broken symmetry of the thermodynamic functions i s  related to the speed at . 

which thermodynamic processes occur; fast processes have broken symmetry ther- 
modynamic functions while the internal phase angles of the thermodynamic func- 



t i o n s  can be taken t o  have zero value for  slow processes .  

The r e a l  and imaginary p a r t s  of equations (46) through (54) can be taken 
i n  o rde r  t o  determine t h e  r e l a t i onsh ip  between phase angles  and magnitudes. For 
ins tance ,  equat ion (50) is  equivalent  t o  

where 

G G 
tan BSS = sGaOS/aSG G t a n  B~ = PGaep/aPG 

PP 

G G G The thermodynamic func t ions  UG , SG , PG , B U ,  6s and 0p depend on t h e  v a r i a b l e s  
T , V  and O p .  Equations (46) through (48) are homologous t o  equat ions (52) 
through (54) so t h a t  t h e  s t a t e  equat ions f o r  mat te r  l oca t ed  i n  broken symmetry 
spacetime can be obtained from t h e  s tate equat ions f o r  matter  i n  symmetrical 
spacetime by making t h e  s u b s t i t u t i o n s  V -t VG and dV -+ dVG = dV s e c . 6 ~ .  Thus 
a l l  state equat ions f o r  which the pressure  depends on p a r t i c l e  number dens i ty ,  
even the+i.deal gas, w i l l  be a f f ec t ed  by g rav i ty ,  and t h e  e f f e c t s  can be de ter -  
mined through the  s u b s t i t u t i o n  V + VG i n  t h e  symmetric spacetime vers ion  of t he  
ma te r i a l  s t a t e  equat ions where VG is  defined i n  equat ion  (7). 

A simple approximate way f o r  ca l cu la t ing  t h e  p re s su re  f o r  a broken space- 
time symmetry thermodynamic system, such as matter  l oca t ed  i n  a g rav i ty  f i e l d ,  
can be  developed so t h a t  t h e  cumbersome s u b s t i t u t i o n  V + VG 'L V sec  BW i n  
every t e r m  of a symmetric spacetime s t a t e  equat ion f o r  matter can be avoided. 
To do t h i s ,  f i r s t  no t e  t h a t  i f  OW is independent of temperature then equat ions 
(49) through (51) can be w r i t t e n  a s  

where i n  a g rav i ty  f i e l d  t he  e f f e c t i v e  pressure  Fh i s  ca l cu la t ed  by the  s tandard 
form (symmetric spacetime form) of thermodynamic equat:ions provided t h a t  

- - 
P' = P sec  BVV 
G G 

I f  i n  add i t i on  fiG and i are not  g r e a t l y  d i f f e r e n t  i n  va lue  then a comparison of 
equat ions (52) through (54) and equat ions (58) through (60) suggests  t h a t  F& % 

and the re fo re  equat ion (61) becomes 

- -C -C 
'L P cos Bw = PG G 

or P I. PG 
G (62) 

where t h e  supe r sc r ip t  c r e f e r s  t o  t h e  pressure  ca l cu la t ed  within t h e  cosine ap- 
proximation. I f  equat ion (62) i s  a reasonable approximation i t  becomes very 
useful because i t  al lows a simple way of es t imat ing  the effecrs of a g rav i ty  



f i e l d  (or o the r  f o r c e  t h a t  induces a broken spacetime symmetry) on t h e  s t a t e  
equat ion of mat te r  without knowing t h e  form of t h e  state equat ion P = P(V,T) 
and without  making the  meticulous change V + VG Q, V s e c  6w i n  each term of t he  
symmetric spacetime form of t h e  s t a t e  equation. If t h e  approximation i n  equa- 
t i o n  (62) is not  v a l i d  then the s u b s t i t u t i o n  V -+ VG Q V s e c  Bw must be made i n  
each t e r m  of t h e  s t a t e  equat ion of matter  f o r  symmetric spacetime. F i n a l l y  i t  
should be pointed out t h a t  equat ions (49) through (51) can be w r i t t e n  equiva- 
l e n t l y  as 

s i n  fiW T/V aSG/aeV = s i n  BW 1 / V  aiiG/aeV + cG (63) 

sin 1/v asG/ae, - aP,/a~ ( 6 4 )  

which are use fu l  f o r  l a r g e  spacetime asymmetries, 

3 ,  GRAVITY AND THE BROKEN SYMMETRY OF SPACE. This  s e c t i o n e s t a b l i s h e s  the  
r e l a t i o n s h i p  between t h e  fundamental laws of thermodynamics and th ' eg rav i t a t i on -  
a 1  cons tan t ,  and sugges ts  t h e  p o s s i b i l i t y  t h a t  t h e  value of t h e  
cons tan t  can be determined from the measurement of thermodynamic p r o p e r t i e s  of 
matter  l oca t ed  i n  t he  g r a v i t y  f i e l d  of t he  e a r t h .  The connection,between grav- 
i t y  and thermodynamics is es t ab l i shed  by f i r s t  determining t h e  r e l a t i o n s h i p  
between t h e  i n r e r n a l  phase angle  of a volume element of ma t t e r , and  t h e  i n t e r n a l  
phase angles  of t h e  s p a t i a l  coord ina tes  of t h e  volume element, and thBn r e l a t i n g  
t h e  coord ina te  i n t e r n a l  phase angles  t o  t he  value of the g r a v i t a t i o n a l  cons tan t .  

A .  Determination of BW from Thermodynamic Measurements. 

From equat ions (S), (8) and (9) i t  fol lows f o r  c a r t e s i a n  coord ina tes  t h a t  

s e c  BW = s e c  Bxx s e c  B sec  f3 
YY ZZ 

( 6 6 )  

csc  VdBV = csc Bxx csc B csc BzZ XYZ deXde deZ 
YY Y 

( 4 7 )  

From equat ions (5) ,  (12) and (14) it  follows f o r  s p h e r i c a l p o l a r  coord ina tes  t h a t  

s ec  BW = (S / s i n  $)set 6 s e c  6 sec  6 
4~ $lCl 99 rx 
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2 
csc  $* VdeV = csc  B csc B csc  Brr r S$ V@r dB dB dBr 

$ '4 4 4 '4 9 
(69) 

If 8 +  = 0 and 8'4 = 0 then equat ion (68) gives  

I n  t h i s  case equat ion (70) i s  exact  but o f t e n  t h e  approximation BW Q Brr is 
used i n  the genera l  case  as i n  equat ion (23).  In t h e  s p h e r i c a l l y  symmetric 
case  given by equat ions (18) and (70) t he  magnitude of the.complex number volume 
element is  given by 2 7 , 2 9  

dv = I dyl = 4nr' s e c  Brr d r  
G 
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Therefore only if the zenith and azimuthal angles are scalars does the simple 
result BW = Brr hold exactly., The case 8$ <c  Br and 04 << Or is generally true 
for the gravity field of the earth so that QV % Brr is a reasonable approxima- 
t ion. 2 7 

From equations (50), (51) and (66) it follows that for a broken symmetry 
cartesian coordinate system the form of the Gibbs-Helmholtz-Maxwell equatiansaxe 

where dV = dxdydz. Equivalently the use of equations ( 6 4 ) ,  (65) and (67) lets 
these equations be written as 

(sin BxX s i n  B sin 6 )/(xyz)a3~G/aexae ae = T ~ F  / a ~  - 7, 
YY zz Y Z G 

( 7 4 )  

(sin 8, sin B sin ~~~)/(xyz)a~~~/ae~ae a 0  = ~P,I~T 
YY Y 2 '  

(75) 

For a broken symmetry spherical polar coordinate system, equations (SO), (51) 
and (68) give the Gibbs-Helmholtz-Maxwell equations as 

[ (sin $ /S )cos 6 cos 6 cos Brr]aEG/av = T@~/JT - FG 
'# 4 4  99 (76 

[(sin + IS )cos B$+ cos B cos Br,laSGla~ = aPG/aT 
$ 4+ (77) 

where dV = r2 sin I/J d$d$dr .  Alternatively, equations ( 6 4 ) ,  (65) and. (69) gives 

2 - 
(sin 13 sin B sin Brr) l(r S) )$r)a3~Glae a0 aer = ~aF,laT - P, 

$9 $ 4  (78) 

2 
( s i n  B sin B sin B,,)/(r s $+r)a3~,/ae a9 aer = aFG/a~ 

'JJ+ 9 9 '4' 4J $ 
(79) 

Within the approximation 6 0 and % 0 for the earth's coordinate system 8 equations (70), (76) and ( 7) give 

In the remainder of this section the approximation in equation (70) will be 
assumed valid for the earth's gravity field, Therefore equations (80) and (81) 
and the discussion in Section 2 suggests that Brr (and hence Bw) can be deter- 
mined from the measurement of pressure in a substance, such as a gas, at vari- 
ous radial distances from the earth's center. 

B. Determination of G, from Thermodynamic Measurements. 

It has been shown in the literature that in broken syrdmetry spacetime the 
radial component of the Newtonian gravitation constant foranon-rotatingplanet 
is given by2' 

2 
Gr = G cos(28,) cas Or (82) 

% ~ ( 1  - 382 + 394 - - - a )  
r r (83) 



where G, = radial component of the Newtonian gravitation constant for broken 
symmetry spacetime, and G = Newtonian gravitation constant: for a totally sym- 
metric spacetime. Actually G ,  along with G$ and Gq are the three components 
of the gravitation constant for the earth, but in this paper Gm and G$ are not 
required because it is assumed that 0+ and 8,,, are negligible compared to 0 , .  2 7 
However, all tpree components of the gravity constant G r , G 4  and G$ would be 
needed if'the exact set of thermodynamic equations (76) and (77) are used to 
analyse thermodynamic measurements rather than rhe simplified set of equations 
given in equation (80) and (81) . The first step in the determination of Gr 
from thermodynamic measurements is to use the approximate equation (83)todeter- 
mine 8 , .  Using only the second order terms in equation (83) gives 

and 

where equation (86) is obtained by using the approximate form of equation (17) 
that is valid for small values of Brr . Combining equations (84) and (86) gives 

where Brr > 0 because aGr/ar > 0 for the earth. Then cos Brr can be calculated 
by a power series approximation 

where cos Brr appears in the thermodynamic equations (80) and (81) for matter in 
a gravity field. In this way the gravitation constants G and G, and the radial 
coordinate distance r from the earth's center will enter the basic thermodynamic 
equations (80) and (81). Therefore thermodynamic measurements of pressure and 
heat capacity of matter at various radial distances from the earth's center may 
possibly yield values of Brr and Gr and determine their variation with radial 
distance. Thermodynamic measurements at various elevations would yield values 
of Brr(r) from equations (80) and (81). Then the value of G, would be obtained 
as a solution to the nonlinear differential equation (87) which can be rewritten 
as follows 

2 2 (raqlar) - 128,,$ = 0 VJ = (G - G,)/G (89) 

where $ 3 0 . 
C .  Determination of f3,, and Gr from Redshift of Photon. 

It has been shown in the literature that the value of the internal phase 
angle of the radial coordinate 8, at any radial distance from the earth's cen- 
ter can be calculated from the difference between the measured value and con- 
ventionally predicted value of the gravitational redshift of a photon as follows2' 

L sin 8 = (zm - z c ) / z c  r sin 9 = - [ (zm - z c ) l z c ]  
112 

r 



where zm = measured g r a v i t a t i o n a l  r e d s h i f t ,  zc = convent ional ly pred ic ted  grav- 
i t a t i o n a l  r e d s h i f t ,  and where 8, < 0 . '' If the value of 8, is small the  follow- 
ing  approximate f o r m  of equat ion (90) can be used 

For t h e  genera l  case combining equat ions (17) and (90) g ives  

o r  using the  small angle  and slow v a r i a t i o n  approximations 

Note t h a t  in  equat ions (92) and (93) Brr > 0 , 0, < 0 and der/dr  > 0 . 2 7  Therefore 
Brr i s  obta inable  from the  measured g r a v i t a t i o n a l  r e d s h i f t  of t h e  p h o t o n a t v a r i -  
ous d i s t ances  from t h e  cen te r  of t h e  e a r t h  so  t h a t  the derivative i n  equat ion 
(93) can be obtained from measured da ta .  Also,  from equarions (82) and (90) i t  
fol lows t h a t  

2 2 
Gr = G ( l  - 2 sin Or)(l  - s i n  or) ( 9 4 )  

where t h e  small  angle  approximation i n  equat ion (97) can be obtained d i r e c t l y  
from equat ions (83) and (91). Combining equarions (85) and (91) gives 

Equations (93) ,  (97) and (98) agree with equat ion (87). In  t h i s  way B,, , G ,  
and dG,/dr can be determined from photon g r a v i t a t i o n a l  r e d s h i f t  measurements 
conducted a t  var ious  r a d i a l  d i s t ances  from t h e  e a r t h ' s  cen te r .  

D. Determination of Brr from the  Complex Number Pressure.  

Combining the s l o w  v a r i a t i o n  approximation form of equarion (17) with equa- 
t i o n  (20) gives 

which can be evaluated a s  i n  equat ion (31) by using the  r e l a t i o n  

Measurements of g rav i ty  a r e  done i n  t h e  atmosphere whether above the  e a r t h ' s  
su r f ace  o r  below i n  mine s h a f t s  and boreholes.  Therefore 8, and OF r e f e r  t o  



t h e  atmosphere when g r a v i t y  measurements a r e  considered. The values  of BF can 
be obtained from measurements of t h e  t h i r d  v i r i a l  c o e f f i c i e n t  of r e a l  gases .  '' 
I f  t he  t h i r d  v i r i a l  c o e f f i c i e n t  is  measured over a range of e l eva t ions  i t  may 
be poss ib l e  t o  determine t h e  func t ion  Brr(r) by using equat ions (99) and (100). 
The measurement of the  t h i r d  v i r i a l  c o e f f i c i e n t  of t h e  r e a l  gases  has  been sug- 
gested as a method of de t ec t ing  g rav i ty  waves .27 It should be no s u r p r i s e  then  
t h a t  the  measurement of t h e  v a r i a t i o n  of t h e  t h i r d  v i r i a l  c o e f f i c i e n t  wi th  e l e -  
v a t i o n  can be used t o  determine t h e  broken spacetime symmetrythatexistswithin 
a r e a l  gas  i n  a  g r a v i t y  f i e l d .  

4. EQUATION OF STATE OF REAL GASES I N  A GFAVITY FIELD. This  s e c t i o n  de- 
termines the  form of t h e  s t a t e  equat ion of r e a l  gases l oca t ed  i n  a  spacetime 
t h a t  has  a  broken symmetry (coordinate  i n t e r n a l  phase) that  is  induced by grav- 
i t y  o r  by a l t e r i n g  t h e  vacuum i n  t h e  labora tory  such as maybedoneby theapp l i -  
c a t i o n  of a  magnetic f i e l d .  . T h i s  c a l c u l a t i o n  i s  done f i r s t  by t h e  exact  method 
of incorpora t ing  broken symmetry space i n t o  each term of t h e  p r e s s u r e s t a t e e q u a -  
t i o n ,  and secondly by t h e  cos ine  approximation technique of equat ion (62).  The 
g r a v i t a t i o n a l  cons tan t  of t h e  e a r t h  may possibly be determined from t h e  measure- 
ment of the  p re s su re  of r e a l  gases  i n  a  conta iner  placed a t  s e v e r a l  e l eva t ions  
i n  a g r a v i t y  f i e l d .  

A .  Calcula t ion  of BW f o r  t he  Real Gases. 

In Sect ion 2 it was shown t h a t  t h e  c a l c u l a t i o n  of the p re s su re  of matter 
loca t ed  i n  a  g r a v i t y  f i e l d  r equ i r e s  t h e  angle BW t h a t  desc r ibes  t h e  degree of 
t h e  broken symmetry of space. It can be shown t h a t  f o r  t h e  r e a l  gases  t h e  in- 
t e r n a l  phase angle  of t h e  p re s su re  i s  given under t h e  small  angle  approximation 
by2 

2 
0 1 (n C s i n  0 , ) / ( 1  + En + C cos 0 n2 + . a * )  
P C 

where C and BC = magnitude and i n t e r n a l  phase angle of t h e  t h i r d  v l r i a l  coe f f i -  
c i e n t  of t h e  r e a l  gases ,  n = p a r t i c l e  number dens i ty ,  B = second v i r i a l  c o e f f i -  
c i e n t  and where cj = E ~ ( T )  . The t h i r d  v i r i a l  c o e f f i c i e n t  C can be p o s i t i v e  o r  

2 7 negat ive  depending on t h e  va lue  of t h e  temperature.  Combining equat ions (28) 
and (101) gives 

where 6j = 6j (T) . Then t h e  va lue  of BW i s  obtained from equat ions (30) a'nd 
(102) f o r  s m a l l  angles  and for a slow v a r i a t i o n  of 0, wi th r a d i a l  d i s t ance  

where 



where o < 0 and II < 0 as described in Section 1, so that aj < Oand % Brr > 0 
for the earth. Then equation (103) gives 

where 

B. Exact Real Gas Stare Equation for Broken Symmetry Spacetime. 

The equation of state of real gases for symmetrical spacetime is given 
by27,28 

where 

n = N/V = particle number density (1 15) 

and Pa, Ea = unrenormalized pressure and energy density respectively, and F ,  
= renormalized pressure and energy density respectively. The connection be- 

tween B ~ ,  ca and the corresponding renormalized values B and ? are given by a 
solution of the trace equation of relativistic thermodynamics. , 2 8  The third 
and higher renormalized virial coefficients , D , , . - -  , are generally com- 
plex number solutions of the relativistic trace equation for symmetrical space- 
time . 2 7 



For a r e a l  gas  i n  a g r a v i t y  f i e l d  t h a t  induces broken symmetry spacetime 
the  s t a t e  equat ions (111) through (115) become 

which give t he  pressure  and energy dens i ty  i n  a g rav i ty  f i e l d , w h e r e t h e p a r t i c l e  
number dens i ty  i n , b r o k e n  symmetry spacetime i s  given by 

n N/VG = n cos BW 
G 

(120) 

a a - 
where VG is  given by equat ion (7) .  T h e r e f ~ r e t h e c a l c u l a ~ i o n o f  PG, EG &d F G ,  EG 
r equ i r e s  t he  eva lua t ion  of BW f o r  t he  r e a l  gases .  It is assumed t h a t  BW i s  a 
func t ion  of the l o c a l  temperature and densi ty .  Combining equat ions (116)-(119) 
and (120) gives 

a a 2  2 
pa = nRT cos  BW (1 + B n cos BW + C n cos BW 
G 

(121) 

a 3  3 a 4  4 + D n cos fiW + E n cos BW + m a * )  

a 2 2 E = nRT cos fiW (3/2 - II cos BW T ~ B ~ / ~ T  - 1/31 cos BW Taca/aT (122) 
G 

3 3 4 4 - 1 cos BW T ~ D ~ / ~ T  - 1/4n cos BW T ~ E ~ I ~ T  - 

- - 2  2 
P~ 

= nRT cos BW (1  + Bn cos BW + Cn cos (123) 

- 3  3 - 4  4 + Dn cos BW + En cos BW + --.) 

2 EG = nRT cos BW (312 - n coa BW T ~ B / ~ T  - 1/2n cos2% T B E / O T  (124) 

3 3 4 4 - 113n cos 8, ~ a i j l a ~  - 1/4n cos Bvv ~ a i l a ~  - * - * )  

Placing equat ion (107) i n t o  equations (12 1) through (124) g ives  



The e f f e c t i v e  f i f t h  and sixth vi r ia l  c o e f f i c i e n t s  appearing i n  t h e  pressure  
equat ion (127) a r e  

The e f f e c t  of broken spacetime symmetry occurs  i n  the f i f t h  and higher  v i r i a l  
c o e f f i c i e n t s  f , ? , , , of t h e  r e a l  gases,  and theref  o r e  t h e  effects of bro- 
ken spacetime symmetry should be observed i n  t h e  r e a l  g a s e s o n l y a t  high densi-  
t i e s .  The f i f t h  v i r i a l  c o e f f i c i e n t  2 is  lowered i n  value due t o  a g rav i ty  f i e l d  
o r  some o the r  means of inducing a broken symmetry i n  spacetime. For comparison 
i t  should be pointed ou t  t h a t  t h e  effects of t h e  gauge and conformal-inxariant 
t r a c e  equat ion occur i n  t h e  t h i r d  and higher  v i r i a l  c o e f f i c i e n t s  C , D  , E  , - * -  , 
and should be more r e a d i l y  de t ec t ab le .  2 7  s 2 8  

C.  , The Cos Approximation. 

According t o  equat ion (62) t h e  pressure  of a real gas i n  a gravity f i e l d ,  
o r  more genera l ly  i n  broken symmetry spacetime, can be obtained from t h e  sym- 
met r i ca l  spacetime pressure given i n  equations (111) and (113) by simply m u l t i -  
p lying by cos BW and assuming t h e  energy d e n s i t i e s  are unchanged as follows 

a 2 a 4  a 5  P: = nRT cos BW (1 + Elan + C n + ~~n~ + E n + F n + e m * )  (131) 



- 4  - 5  Fz = ~ R T  cos B (1 + Bn + cn2 +En3 + E n  +Fn + * - - )  w 1133) 

where t h e  supe r sc r ip t  c is used t o  des igna te  t h e  cos ine  approximation va lue  f o r  
t h e  thermodynamic pressure .  Note that  E$ 'L Ea and EG E i n  t h i s  procedure. 

, Expanding t h e  cosine terms i n  t h e  form of equat ion (107) g ives  

Therefore for t h e  cos ine  approximation ru le  f o r  c a l c u l a t i n g  the pressure of  a 
r e a l  gas i n  a g r a v i t y  f i e l d  the s ta te  equat ions f o r  the pressure  a r e  a f f ec t ed  
only i n  t h e  fifth and h ighe r  v i r i a l  c o e f f i c i e n t s  i n  such a way t h a t  w i th in  t h i s  
approximation t h e  f i f t h  and s i x t h  v i r i a l  c o e f f i c i e n t s  a r e  obtained from equation 
(137) t o  be 

The cosine approsimation pressure  equat ions (131) and (133) ag ree  out  t o  t he  
fifth order  v i r i a l  c o e f f i c i e n t  with the  pressure  va lues  obtained from t h e  exact  
equat ion (121) and (123) as can be seen by comparing equat ions  (129) and (139). 
However, d i f f e r ences  between the exact and approximate c a l c u l a t i o n s  appear i n  
t h e  s i x t h  v i r i a l  c o e f f i c i e n t  a s  can be  seen by comparing equat ions (130) and 
(140).   heref fore t h e  r e a l  gases pEC 

" p! 
and ?; % FG at l e a s t  ou t  t o  t h e  f i f t h  

v i r i a l  c o e f f i c i e n t ,  and so  t h e  cosine r u  e f o r  ca l cu la t ing  t h e  pressure  of a 
real gas i n  a g rav i ty  f i e l d  is a reasonable approximation. 



5. STATE EQUATIONS OF SOLIDS AND QUANTUM LIQUIDS IN A GRAVITY FIELD. 
This section considers the effects of gravity on the thermodynamic functions of 
solids and quantum liquids, and suggests that the measurement of the Griineisen 
function can be used to determine the elevation dependent gravitational constant 
Gf(r) . The solids and quantum liquids are assumedtohaaeasimple Mi'erGrilneisen 
type of state eqpation wherein the pressure is given for symmetric spacetime . .  
(absence of gravity field) by 2 7 , 2 8  

and the,energy densities and internal energies are 

where the thermal energy densities are written as 

where v = number that depends on type of system being considered. The complex 
number energy densities and pressures are written as 

while the complex number zero-temperature value of the Grtineisen function is 
mitten as 

- - 
where 9 , Po , Fv yo , ET and E, = renormalized values of the symmetric spacetime 
pressure, zero temperature pressure, thermal pressure coefficientr zero temper- 
ature Griineisen function, ~hermal energy density, and thermal energy density co- 
efficient respectively, and where pa , PG , PC , y: , E$ and E: = corresponding un- 
renormalized values of these quantities. The relation between the renormalized 
and unrenormalized thermodynamic functions is given by a relativistic trace 
equation. 2 8 

The thermodynamic quantities that appear in equations (141) through (148) 
are functions of n and T,where n = N/V = average particle'number density for 
symmetric spacetime. In a gravity field, or some laboratory created field such 
as a magnetic field, the spacetime symnietry is broken and the particle number 
density n~ is given by equation (120), and for this case the renormalized and 
unrenormalized state equations for solids and quantum liquids are written as 



where the thermodynamic quantities of equations (149) through (150D) are func- 
tions of nG and T and can be obtained from the corresponding thermodynamic quan- 
tities in the symmetric spacetime equations (141) and (142) by making the sub- 
stitution n + n~ = n cos B w .  Therefore the angle BW must be calculated for 
the solid and quantum liquid type of state equations given in equations (149) 
through (150D). The relativistic trace equation that connects the renormalized 
and unrenormalized thermodynamic quantities of equations (149) through (150D) is 
just the standard form for solids and quantum liquids (reference 28) with the 
substitution n -t n~ . It should be pointed out that the cosine approximation, 
equation ( 6 2 ) ,  for calculating the pressure of a system in the presence of a 
gravity field can be applied to equations (141) and (142) with the result that 

- pC = F~ -c EC = cos (Fo + YOET) 
G Go + 'GO GT 

a c a a P:~ = PGo + vac~ac = cos Bw (P: + Go GT 

where the superscript cdesignates quantities calculated within the cosine ap- 
proximation. If the cosine approximation has validity for solids and quantum 
liquids, fhen ?; % ? and %c 1 P: where FG and P; are the exact pressures for 

G solids and quantum liquids in a gravity field which are obtained from the sym- 
metric spacetime pressures and Pa by making the substitution n + n~ = n  cos BVV 
in each term of the symmetric spacetime form of the state equations (141) and 
(142). 

The value BW can be calculated from equations (28) and (30) provided that 
the internal phase angle of the pressure Bp is known for solids and quantum 
liquids. The phase angle Bp can be calculated from the real and imaginary parts 
of equation (141) which can be written as 

0 P cos O p  = P cos 0 + cos(eO + BEy) 
0 P Y 

0 P sin 9 = P sin B p  + y E sin(9; + BEY) P 0 0 T 



The magnitude and i n t e r n a l  phase angle  of t h e  pressure  can be obtained from 
equat ions (153) and (154). The magnitude of t h e  pressure  is  given by 

o r  approximately a s  

where 

The i n t e r n a l  phase angle of the pressure  f o r  s o l i d s  and quantum liquids i s  ob- 
tained from equat ions (153) and (154) t o  be 

t a n  0 = A/B 
P (158) 

where 

For small i n t e r n a l  phase angles ,  the i n t e r n a l  phase angle of p r e s s u r e i s  g ivenby 

I f  furthermore << Po then 

where 

The value  of the angle can be obtained from equat ions (28), (30) and (160) 
t o  be of t h e  genera l  form 

- 0 
B~ - B~ + b v ~ Y  (162) 

where b, is  a func t ion  of dens i ty  bv = b,(n) . Fromequation (162) i t  fol low s t h a t  

0 
cos B = cos (bW + bvTY) 

W 
(163) 

0 V 0 
% cos BW - b T s i n  BW 

V 

V 0 
where f o r  t h e  approximation i n  equat ion (163) i t  i s  assumed that bvT << BW . 

Combining equat ions (51),  ( 1 4 9 ) ,  (150A) and (163) g ives  the following ap- 
proximation equat ions f o r  t he  pressure  of s o l i d s  and quantum L i q u i d s i n a g r a v -  
i t y  field 



- 0 
PGo I. - dD /dV cos Bw Go 

0 s cos Bw 
0 

- 0 0 

P ~ v  
I. (V - 1)-' (diGv/dv cos BW - bVdiGo/dv s i n  BW) 

- 1 0 
= (V - 1) (dfiGV/dv cos 13; + bvPGo t an  BW) (167) 

where t h e  approximation i n  equat ion (165) assumes t h a t  UGo % to . t h e  approx- 
imation i n  equat ion (168) i s  v a l i d  for small va lues  of t h e  angle  $& , t h e  ap- 
proximation i n  equation (169) holds f o r  cGv % cv , the approximation i n  equat ion 

0 (170) i s  appropr i a t e  f o r  small va lues  of BW and for oGv 'L ov , t h e  approximation 
i n  equat ion (171) i s  v a l i d , f o r  small b v , a n d  f i n a l l y  - t h e  approximation i n  equa- 
t i o n  (172) i s  v a l i d  f o r  small bv and f o r  eGV-% UV . In a g rav i ty  f i e l d  FGo < Po 
but  FGv > Fv i n  genera l ,  bu t  i f  bv = 0 then PGv < F, as shown by equat ion (172). 

From t h e  d e f i n i t i o n  of t h e  zero-temperature GrIineisen funct ion and using 
equat ions (166) through (172) i t  fol lows t h a t  

0 - 1 - 0 
1 yo cos BW + (V - 1) b P /Ev s i n  $v 

V 0 
(177) 

v yo + (V - l)-'b V O W  P B' v (178) 

0 
% (V - ~)-'v/E~., dEGV/dv cos BW by 'L 0 (179) 

0 
Q YO cos BW by r~ 0 (180) 



0 
where t h e  approximation i n  equation (176) i s  v a l i d  f o r  small  values of B W ,  
equat ion (1.77) holds  f o r  ijGv % U V ,  equat ion (178) assumes t h a t  B& is  small and - 
UGv Q nv , t he  approximation i n  equat ion (179) is v a l i d  f o r  small bv (temperature - 
independence of B h )  , while  equat ion (180) is  v a l i d  for small bv and f o r  bGv % Uv. 
In  a g r a v i t a t i o n a l  f i e l d  yGo i s  genera l ly  l a r g e r  than t h e  zero f i e l d  va lue  yo a s  
shown by equation (178). however when bv = 0 i t  fol lows from equation (180) t h a t  

YGo < Y o .  Using t h e  approximation i n  equat ion (179) with bv 0 gives 

For a symmetrical spacetime i n  t h e  absence of a g rav i ty  f i e l d  2 7 , 2 8  

Ev 2. A exp[- (V - 1) ljo dnln] (182) 

The components of t h e  pressure  given i n  equat ions (164) and (166) and rhe  zero 
temperature va lue  of t h e  GrUneisen parameter given i n  equat ion (174) a r e  der ived 
from the exact thermodynamic equat ion (54) by making t h e  s u b s t i t u t i o n s  
n + TIG = n cos f 3 ~  and dV + dVG = sec BW dV which r e s u l t s  i n  equat ion (51). 
Therefore a s i d e  from t h e  approximation bVTV << B& t h a t  is used i n  equat ion (163), 
equat ions ( 1 6 4 ) ,  (166) and (174) a r e  exac t  equat ions f o r  t h e  pressure  components 
and GrUneisen parameter f o r  a s o l i d  o r  quantum l i q u i d  i n  a g rav i ty  f i e l d .  

Now the  cosine approximation is  used t o  c a l c u l a t e  t he  componentsofthepres-  
su re  and the  zero temperature Gruneisen func t ion  f o r  s o l i d s  and quantum l i q u i d s .  
Combining equat ions (145A), (149), (151) and (163) g ives  t h e  following expres- 
s ions  f o r  the pressure  components wi th in  t h e  cosine approximation 

- C - 0 
PGo = P cos BW 

0 

- 0 0 = P cas BW - b s i n  Bw 
%v v V 0 

The following a r e  t h ree  values f o r  t h e  zero temperature GrUneisen func t ion  cor- 
responding r e spec t ive ly  t o  t he  case  of symmetric spacerime (no g r a v i t y ) ,  t h e  
case  of a g rav i ty  f i e l d ,  and the cosine approximation f o r  t h e  thermodynamic func- 
t i o n s  i n  a g rav i ty  f i e l d  

Combining equat ions (183B) and (183E) g ives  
- o - b F sin BW o 

-C EC = E cos BW 
'GOGV O V  

I f  i t  is  assumed t h a t  gEv % EGv c zv then equat ion (184) becomes 



- -C 0 
'GO 'b '0 

cos B$ - b P d E  s i n  BW 
V O  v 

where t h e  approximations i n  equat ions (183C) and ( 1 8 6 ) a r e v a l i d f o r  sma l lva lues  
of B & ,  while t he  approximations i n  equat ions (183D) and (187) are valid f o r  
by = 0 which is  the condi t ion  f o r  t h e  temperature independence of B w .  A com- 
parison of equat ions (165) and (183A) shows t h a t  t h e  c o r r e c t  T = 0 va lue  of t h e  
pressure is  reproduced by t h e  cos ine  approximation, but  a comparisonof equat ions 
(169) and (183B) shows t h a t  t h e  temperature dependent: p ressure  t e r m i s n o t  given 
c o r r e c t l y  by the  cosine approximation except when bv = 0 i n  which case  equat ion 
(172) agrees  with (183D) and equat ion (180) agrees  with (187). Therefore only 
when is  temperature independent does the  cosine approximation g ive  accu ra t e  
va lues  of the pressure  and zero temperature Grtlneisen parameter f o r  s o l i d s  and 
quantum l i q u i d s .  

6 .  DEBYE THEORY OF SOLIDS I N  A GRAVITATIONAL FIELD. This sec t ion  examines 
t h e  e f f e c t s  of g rav i ty  on the Debye theoryof  t h e  thermal s t a t e  equat ionof  s o l i d s ,  
and suggests  t h a t  t hese  e f f e c t s  can be used t o  determine the  g r a v i t a t i o n a l  con- 
s t a n t  h ( r )  . The Debye theory of t h e  thermal s t a r e  of a s o l i d  is  based on a 
c a l c u l a t i o n  of t h e  normal modes of t h e  long i tud ina l  and t r ansve r se  v i b r a t i o n s  
of a s o l i d  combined with the quantum theory expression f o r  t h e  average energy 
per normal mode. O m 3  This  procedure is  descr ibed i n  d e t a i l  i n  t he  l i t e r a t u r e  
and w i l l  be b r i e f l y  reviewed i n  t h i s  paragraph by wr i t i ng  the  s tandard Debye 
equations i n  a complex number form which are needed t o  desc r ibe  t h e  e f f e c t s  of 
g r a v i t y  on t h e  i n t e r n a l  energy and hea t  capacity of a s o l i d .  Thenumberofphonon 
normal modes i n  a complex number frequency i n t e r v a l  d< is  given by3 0 - 3 4  

where C = complex number f requencies  of t h e  normal modes which a r e  represented 
by3' 

where etR = i n t e r n a l  phase angle  of the per iods  of v i b r a t i o n ,  = complex num- 
ber  Debye frequency of a s o l i d  i n  a g r a v i t a t i o n a l  f i e l d  which is  given by t h e  
fol lowing gene ra l i za t ion  of t he  s tandard r e s u l t  0-3 

where 

G - 
@VM - - O ~ R  

and where N = number of atoms i n  a s o l i d ,  = complex number volume of a s o l i d  
i n  a g rav i ty  f i e l d  which i s  represented  by equation (3) ,  EG = complex number 
average wave speed i n  a s o l i d  i n  t h e  presence of a g r a v i t a t i o n a l  f i e l d  and i s  
given by 3 0-3 4 



where ERG = complex number longitudin-a1 wave speed f o r  a s o l i d i n a g r a v i t a t i o n a l  
f i e l d ,  and EtG = complex number t r ansve r se  (shear) wave speed f o r  a s o l i d  l o -  
cated i n  a g r a v i t a t i o n a l  f i e l d .  The complex number average energy pe r  normal 
mode is  given by the following gene ra l i za t ion  of t h e  s tandard r e s ~ l t ~ ~ ~ ~ ~ ' ~ ~  

which inc ludes  t h e  zero poin t  energy corresponding t o  T = 0 .  

The i n t e r n a l  energy of a Debye s o l i d  t h a t  i s  loca ted  i n  a g rav i ty  field i s  
then given by equat ions (188) and (193) a s  

where 9 and c! a r e  s imp l i f i ed  t o  

-G -G where xD = TD/T and 

-G where t h e  complex number Debye temperature TD f o r  a s o l i d  i n  a g r a v i t a t i o n a l  
f i e l d  is  given by 

Equation (195) g ives  

and the measured zero po in t  energy is 

G G G G uG om = Uo cos O E o  = 9/8NhvM cos  OvM = 9 / 8 ~ h v ~  

where vG = measured Debye frequency given by 
Mm 



G G G G v = ui cos 0 = (k /h)~:  cos 0 = (k/h)TDn 
Mrr~ vM TD 

G where Th = measured Debye temperature for a s o l i d  i n  a g r a v i t a t i o n a l  f i e l d .  
Equations (200) and (201) a r e  e s s e n t i a l l y  t h e  s tandard r e s u l t  that t h e  zero 
po in t  energy is l i n e a r l y  dependent on the Debye frequency. 

The complex number Debye func t ion  f o r  a s o l i d  i n  a g r a v i t a t i o n a l  f i e l d  is  
defined as the following gene ra l i za t ion  of t h e  s tandard form 3 0-3 4 

-G 
x, 

so  that equation (196) can be w r i t t e n  as 

Equation (203) can be r ewr i t t en  as 
n 

U -G -3 E~ (T;/T) = 3 (xD) 1 sec $x x3 exp [ j (4ex + 6,) I Pdx 
0 

where 

3 = {[cos(x s i n  ex) + j s i n ( x  sin eX)]exp(x cos 0 ) - I}-' 
X (206) 

t a n  Bxx = xaOx/dx (207) 

For the case when 0, = 0' = constant  equat ion  (205) becomes, 
X 

-G 
x, 

where 

- 
Fc 

= {[cos(x sin 0') + j sin(x s i n  8:)]exp(x cos 0 )  - 11-I 
X 

(209) 

At low temperatures t he  complex number Debye function that appears i n  
equat ion (203) can be s i m p l i f i e d  by writing3 0'3 

- m - 1 
= C e  

-n? 

n= 1 
so t h a t  

m m 
-G -3 3 

= 3 (xD) 1 sec 8, x exp [ j (4flx + Bn) 1 yndx 
n-1 o 

where 



- -nx cos 0, 
Hn = e [ c o s ( m  s i n  f3 ) - j ain(nx s i n  ex)] 

X 
(212) 

C For t h e  case of constant  0, = 9: , o r  equiva len t ly  0,-= 8, , t h e  i n t e g r a l  i n  equa- 
t i o n  (211) can be w r i t t e n  as 

-G 3 " CO 
3 -nX 5 ( T ~ / T )  = 3(T/TD) 1 [exp (j40:) x e dxl 

G D n= 1 o 

It has been shown i n  Reference 35 t h a t  t h e  quant i ty  i n  t he  square brackets of 
equat ion (213) i s  a r e a l  number given by 6/n4 so  t h a t  t h i s  equation can be 
w r i t t e n  a s  

Cambining equat ions (204) and (214) gives t h e  following l o w  temper- 
ature form for the i n t e r n a l  energy of a s o l i d  i n  a g r a v i t a t i o n a l  f i e l d  

o r  i n  terms of t h e  magnitude and the  i n t e r n a l  phase angle 

The complex number heat  capac i ty  f o r  a low temperature s o l i d  i n  a g r a v i t a t i o n a l  
f i e l d  is obtained from equat ion (215) t o  be 

The measured value of t h e  l a t t i c e  v i b r a t i o n  (phonon) energy of a low t e m -  
pera ture  Debye s o l i d  i n  a g r a v i t a t i o n a l  f i e l d  is then given by 

G 4 
= 9/8NhvM cos 0 + 9/15n RT(T/T:)~ c o ~ ( 3 8 ~ ~ )  

tR 

4 3 
= 918Nhvk + 9/15n RT(T/T:~)~  cos B r cos(30r) 

G G where VM, and Tg, a r e  t h e  measured values of the Debye frequency and Debye t e m -  
pera ture  r e spec t ive ly  f o r  a s o l i d  i n  a g r a v i t a t i o n a l  f i e l d  and a r e  defined i n  
equat ion (202). The measured l a t t i c e  hea t  capac i ty  of a s o l i d  i n  g rav i ty  f i e l d  
is  obtained from equat ion (218) t o  be 



4 G 3  3 
= 12/5n R(T/T~*) cos  O r  cos(30r) 

Equations (219) and (220) can a l s o  be w r i t t e n  i n  terms of 0, by rememberingthat 
t he  r e d s h i f t  of a phonon i n  a g r a v i t y  f i e l d  i s  r e l a t e d  t o  t h e  change i n  grav i -  
t a t i o n a l  p o t e n t i a l  energy which g ives  immediately etR = 0, . This is  a l s o  t h e  
phase angle condi t ion  f o r  photons i n  a g r a v i t a t i o n a l  f i e l d .  Equations (219) 
and (220) show t h a t  t h e  i n t e r n a l  energy and hea t  capac i ty  f o r  a s o l i d i n a g r a v -  
i t a t i o n a l  f i e l d  a r e  reduced compared t o  t h e i r  f r e e  space values.  A t  the e a r t h ' s  

3 su r f ace  the e f f e c t  is  small because 0, = - 5.7" so t h a t  cos 8, cos(38,) = 0.94 
and t h i s  r ep re sen t s  only a 62 reduct ion  i n  the measured values of t h e  i n t e r n a l  
energy and hea t  capac i ty  a t  t he  e a r t h ' s  su r f ace  a s  compared t o  t he  corresponding 
measured va lues  i n  a g r a v i t y  f r e e  a r e a  a t  a l a r g e  d i s t ance  from t h e  easrh .  I n  a 
l a r g e  g r a v i t a t i o n a l  f i e l d  as found i n  neutron s t a r s  and white dwarf stars the 
value  of 9, may be l a r g e  and of t h e  order  0, % r/6 so  t h a t  t h e  measured h e a t  
capac i ty  and i n t e r n a l  energy of v i b r a t i o n s  of a s o l i d  can be  zero i n  value.  
These condi t ions  may a l s o  hold i n  t h e  normal s t a t e  of a high-Tc superconductor 
because the  superconducting s t a t e  is  assoc ia ted  with O r  = 1 ~ 1 3  and O t  = ~ 1 6  f o r  
the e l ec t rons  i n  a Cooper p a i r .  Because t h e  f a c t o r  cos30r cos(30r) appears  i n  
the  expression f o r  t h e  measured h e a t  capac i ty  i n  equat ion (220) i t  fo l lows  t h a t  
t he  measurement of t h e  h e a t  capac i ty  of a s o l i d  at var ious  r a d i a l  d i s t a n c e  f r o m  
t h e  e a r t h ' s  cen ter  can determine B r ( r ) , a n d  t h i s  w i l l  g ive  va lues  of the r a d i a l  
coordinate  dependence of t h e  g r a v i t a t i o n a l  constant  G,(r )  from equat ion (82) .  

7. CONCLUSION. The thermodynamic s t a t e  equat ions of matter  a r e  a f f e c t e d  
by g r a v i t a t i o n a l  f i e l d s  through an induced broken symmetry of t h e  spacetime i n  
which t h e  matter  is  loca t ed .  The e f f e c t s  a r e  small  a t  t h e  e a r t h ' s  su r f ace  but  
may have apprec iab le  e f f e c t s  i n  compact s t e l l a r  ob jec t s .  Applicat ions t o  t h e  
r e a l  gases  show chat t h e  e f f e c t s  of g rav i ty  occur i n  t h e  f i f t h  and h igher  v i r i a l  
c o e f f i c i e n t s ,  s o  t h a t  t h e  e f f e c t s  a r e  small except a t  very h igh  d e n s i t i e s .  For 
s o l i d s  t h e  e f f e c t s  of g r a v i t y  on t h e  l a t t i c e  phonon component of t h e  i n t e r n a l  
energy and heat capac i ty  is  about 6% a t  t h e  sur face  of t h e  e a r t h ,  and a r i s e s  
through t h e  i n t e r n a l  phase ang le  of t h e  Debye temperature. Thermodynamic mea- 
surements may poss ib ly  be used t o  determine the  broken symmetry of spacetime 
and the values  of the g r a v i t a t i o n a l  constant  t h a t  d e p e n d s o n t h e r a d i a l d i s t a n c e  
from the  center  of t he  e a r t h .  

ACKNOWLEDGEMENT 

Many thanks go t o  El izabe th  Klein f o r  typing t h i s  paper. 

REFERENCES 

1. Chandrasekhar, S . ,  An In t roduc t ion  t o  t h e  Study of S t e l l a r  S t ruc tu re ,  
Dover, New York, 1939. 

2.  Eddington, A. S. ,  The I n t e r n a l  Cons t i tu t ion  of t he  S t a r s ,  Dover, New York, 
1926. 



3 .  Schwarzschild, M., Structure and Evolution of the Stars, Dover, New ~ork, 
1958. 

4. Uns2Sld, A., The New Cosmos, Springer-Verlag, New York, 1969. 

5. Aller, L, H., Astrophysics - Nuclear Transformations, Stellar Inteflors, 
and Nebulae, Ronald Press, New York, 1954. 

6 .  Kuiper, G. P., editor, The Sun, Univ. of Chicago Press, Chicago, 1953. 

7 .  Kuiper, G. P., editor, The Earth as a Planet, Univ. of Chicago Press, 
Chicago, 1954. 

8. Jeffreys, H., The Earth, Cambridge University Press, New York, 1962. 

9. Sracey, F. D,, Physics of rhe Earth, John Wiley, New York, 1977. 

10. Weinberg, S., Gravitation and Cosmology, John Wiley, New York, 1972. 

11. Saakyan, G. S., Equilibrium Configurations of Degenerate Gaseous Masses, 
John Wiley, New York, 1974. 

12. Misner, C. W., Thorne, K. S. and Wheeler, J. A., G-ravitation, W.H. Freeman, 
San Francisco, 1973. 

13. Stacey, F. D. and Tuck, G. J., "~eo~hysical Evidence for Non-Newtonian 
Gravity," Nature, Vol. 292, p. 230-232, 1981. 

14. Stubbs, C. W., Adelberger, E. G., Heckel,B.R.,Rogers,W.F.,Swanson,H..E., 
Watanabe, R., Gundlach, J. H. and Raab, F. J., "Limits on Composition-Dependent 
Interactions Using a Laboratory Source: Is There a "Fifth Force" Coupled to 
Isospinrt1 Phys. Rev. Lett., Vol. 62, p. 609, 6 Feb. 1989. 

15. Kuroda, K. and Mio, N., "Test of a Composition-Dependent Force by a Free- 
Fall InterferometerYtf Phys. Rev. Lett., Vol 62, p. 1941, 24 Apr. 1989. 

16. Bizzeti, P. G., Bizzeti-Sona, A. M., Fazzini,T.,Perego,A. andTaccetti,N., 
"Search for a Composition-Dependent Fifth Force," Phys. Rev. Lett., Vol. 62, 
p. 2901, 19. June 1989. 

17. Bartlert, D. F. and Tew, W. L., "Possible Effect of the Local Terrain on 
the Australian Fifth-Force Measurement," Phys. Rev. D, Vol. 40, p. 673, 
15 July 1989. 

18. Thomas, J., "Testing the Inverse-Square Law of Gravity: Error and Design 
with the Upward Continuation 'Integral," Phys. Rev. D, Vol. 40, p. 1735, 
15 Sept. 1989. 

19. Thomas, J., Kasameyer, P., Fackler, O., Felske,D.,.Harris,R.,Kammeraad,J., 
Millert, M. and Mugge, M., "Testing the Inverse-Square Law of Gravity on a 
465-m Tower," Phys. Rev. Lett., Vol. 63, p. 1902, 30 Oct. 1989. 

20. Miiller, G., Z i i r n ,  W., Lindner, K. and Rtjsch, N., "Determination of the 
Gravitational Constant by an Experiment at a Pumped-Storage Reservoir," 
Phys, Rev. Lett., Vol. 63, p. 2621, 11 Dec. 1989. 



21. Cowsik, R., Krishnan, N., Tandon, S. N. and Unnikrishnan, S., "Strength of 
Intermediate-Range Forces Coupling to Isospin," Phys. Rev. Lett., Vol. 64, 
p. 336, 22 Jan. 1990. 

22, Jekeli, C., Eckhardt, D. H. and Romaides, A. J., "Tower Gravity Experiment: 
No Evidence for Non-Newtonian Gravity,'' Phys. Rev. Lett., Vol. 64, p. 1204, 
12 Mar. 1990. 

23. Nelson, P. G., Graham, D. M. and Newman, R. D., "Search for as Intermediate- 
Range Composition-Dependent Force Coupling to N-2," Phys. Rev. D, Vol, 42, 
p, 963. 15 Aug. 1990. 

24. Thomas, J. and Vogel, P., "Testing the Inverse-Square Law of Gravity in 
Boreholes at the Nevada Test Site," Phys. Rev. ~ett., Vol. 65, p. 1173, 
3 Sept. 1990. 

25. Zumberge, M. A., Ander, M. E., Lautzenhiser, T. V,, Parker, R. L., Aiken, 
C. L. V., Gorrnan, M. R., Nieto, M, M., Cooper, A. P. R., Ferguson, J. F., 
Fisher, E., Greer, J., Hammer, P., Hansen, B. L., McMechan, G. A. ,  Sasagawa, 
G. S., Sidles, C., Stevenson, J. M., and Wirtz, J., "The Greenland Gravitation- 
al Constant Experiment," J. G. R., Vol. 95, p. 15,483, Sept. 10, 1990. 

26. Speake, C. C., Niebauer, T. M., McHugh, M. P., Keyser, P, T., Faller, J. E., 
Cruz, J. Y., Harrison, J. C., Makinen, J. and Beruff, R. B. ,  "Test of the In- 
verse-Square Law of Gravitation Using the 300-111 Tower at Erie, Colorado,'' Phys. 
Rev. Lett., Vol. 65, p .  1967, 15 Oct. 1990: 

27. Weiss, R. A., Gauge Theory of Thermodynamics, K&W Publications, Vicksburg, 
MS, 1989. 

28. Weiss, R. A., Relativistic Thermodynamics, Exposition Press, New York, 1976. 

29. Weiss, R, A . ,  "Electromagnetism and Gravity," Eighth Army Conference on 
Applied Mathematics and Computing, Cornell University, Ithaca, NY, ARO 91-1, 
June 19-22, 1990, p. 265. 

30. Huang, K,, Statistical,Mechanics, John Wiley, New York, 1963. 

31. Mayer, J. E.and Mayer, M. G., Statistical Mechanics, John Wiley, New Yb.rk, 
1977. 

32. H i l l ,  T. L. , An Introduction to statistical Mechanics, Addison-Wesley , 
Reading, MA, 1960. 

33. Eyring, H., Henderson, D., Stover, B. J. and Eyring, E. statistical 
Mechanics and Dynamics, John Wiley, New York, 1964. 

34. Tolman, R. C., The Prhciples of Statistical Mechanics, Oxford, New York, 
1938. 

35. Weiss, R. A., "~hermal Radiation of High-T, Superconductors," Eighth Army 
Conference on Applied Mathematics and Computing, Cornell University, Ithaca, 
NY, ARO 91-1, June 19-22, 1990. p. 399. 



I . .  

Robust Stabilization, Robust Performance, and Di~turbance Attenuation 

for uncertain Linear Syetems 

Yeih J. Wang and Leang S. Shieh t 

Department of Electrical Enginedng , Cullen College of Engineering 

University of Houston 
, , 

University park, Houston, TX 77204-4793, USA 

John W. Sunkel 

Avionics Systems Division, NASA-Johnson Space Center 

Houston, TX 77058, USA 

Abstract: Tbis paper presents a linear quadratic regulator approach to the robust etabi- 

lization, robust performance, and disturbance attenuation of uncertain linear systems. The 

state-feedback designed systems provide both robust stability with optimal performance 

and disturbance attenuation with H,-norm bounds. The proposed approach can be ap- 

plied to mate hed and/or mismatched uncertain linear systems. For a matched uncertain 

linear system, it is shown that the disturbance-attenuation robust-stabilizing controllers 

with or without optimal performance always exist and can be easily determined with- 

out searching; whereas, for a mismatched uncertain linear system, the introduced tuning 

parameters greatly enhance the flexibility of finding the disturbance-attenuation robust- 

stabilizing controllers. 
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1. Introduction 

The problems of robust stabilization, robust performance, and disturbance attenua- 

tion of uncertain linear systems have drawn much attention recently. Nonlinear robust 

control laws that stabilize uncertain linear systems satisfying matching conditions were de- 

veloped by Leitmann (71, Feedback control designs based on the algebraic Riccati equation 

(ARE), which adjust a scalar to achieve stabilization of the systems with uncertainty pa- 

rameters bounded by constraint sets, were derived by Petersen and Hollot [9], Petersen [lo], 

Schmitendorf [12], and Khargonekar e t  al. [6]. These approaches have generally utilized 

the concept that a given ARE-based control law guarantees the existence of a quadratic 

Lyapunov function (and hence, stability) for the closed-loop uncertain linear system. Also, 

other recent research attention, e.g., Bernstein and Haddad [2], Doyle e t  al. [3], Glover and 

Doyle [4], and Petersen [ll], has been given to the ARE-based control designs which stabi- 

lize a nominal system and reduce the effect of disturbances on the output to a prespecified 

level. More recently, Veillette e t  al. [15] has proposed an ARE-based design which not 

only robustly stabilizes an uncertain linear system with the structured uncertainty in the 

system matrix, but also provides disturbance attenuation with a robust H,-norm bound. 

In this paper, based on linear quadratic regulator theory and Lyapunov stability the- 

ory, we develop linear state-feedback control laws for robust stabilization, robust perfor- 

mance, and disturbance attenuation of a given uncertain linear system with the uncer- 

tainties existing both in the system matrix and the input matrix. The proposed design 

.procedures can be applied to both matched and mismatched systems. The paper is orga- 

nized as follows. First, the matching conditions for uncertain linear systems to be stabilized 

with prespecified disturbance attenuation level are defined in Section 2. It is shown that 

many dynamic systems, described by second-order monic vector differential equations, 

often satisfy these matching conditions. Next, linear robust stabilizing controllers which 

providendisturbance attenuation and optimal performance for matched systems with norrn- 

bounded or structured uncertainty matrices are developed in Section 3. Also, it is shown 

that linear disturbance-attenuation robust-st abilizing controllers with optimal performance 

for matched systems always exist and can be easily determined without seaching. Then, 

in order to achieve the stabilization and disturbance attenuation of mismatched systems 



with norm-bounded or structured uncertainty matrices, alternative linear distrurbance- 

attenuation robust-stabilizing controllers are proposed in Section 4. To demonstrate the 

proposed methods, two examples are illustrated in Section 5, and the results are summa- 

rized in the conclusion in Section 6. 

2. Nomenclature, Systems, and Definitions 

Throughout this paper, we denote: 

maximum singular value of a matrix &I; 

minimum singular value of a matrix A f ;  

112 matrix norm, llhfll umeX(M)  = ~ ~ ~ ~ ( h l ~ . h ~ ) ;  

identity matrix of appropriate dimension; 

null matrix of appropriate dimension; 

matrix M is symmetric positive (strni)definite; 

matrix M is symmetric negative (semi)definite; 

means P - Q > ( 3 )  0; 

means P - Q < ( 5 )  0 .  

Consider the uncertain linear system 

where z(t) E R n  is the state, u( t )  E Rm is the control, w ( t )  E 7 2 9  is the disturbance, 

y ( t )  E RP is the output, A E RnXn,  B E Rnxm,  D E Rnxq, and C E R p x n  are the 

nominal system matrix, input matrix, disturbance matrix, and output matrix, respectively, 

and AA and AB are the associated uncertainty matrices of appropriate dimensions with 

respect to A and B. We assume that the nominal system (A,  .B) is controllable. without 

loss of genera1ity;we also assume that B has full rank. Our objective is to design a 1inea.r 

state-feedback control law u(t) = Kz(t)  such that the resulting closed-loop system matrix 
a 

A, = [ A  + AA + ( B  + A B ) K ]  is asymptotically stable, and the resulting closed-loop system 

is optimal with respect to a certain performance index, and tihe H,-norm of the closed- 

loop transfer functon matrix H ( s )  k C[aI - A,]-ID from the disturbance input ~ ( t )  to 



the output y ( t )  is less than or equal to some prespecified disturbance-attenuation value 6, 

i.e., H T ( - j w ) H ( j w )  5 6 ' 1  for all w E R. 

To proceed with the derivation for such a control law, we need to consider two classes 

of uncertain linear systems which are matched and mismatched. The system in (1) is called 

a matched uncertain linear system if there exist matrices E E 7Zmxn, F E Rmxm, and 

G E RmXq such that 

(i) a A  = B E ,  

(ii) aB = BF, and < 1 or 2 1  + F + F~ > 0, and 

(iii) D = BG. 

The matching conditions (i) and (ii) constitute sufficient conditions [7] for the ~ys t cm to be 

stabilizable. We shall show that the uncertain linear system is, in fact, linearly stabilizable 

with any disturbance attenuation 6 > 0 if it satisfies conditions (i-iii). 

It is important to note that a dynamical system [13] which can be modeled by a 

second-order monic vector differential equation is often a matched system. This fact can 

be verified as follows. Consider the second-order monic vector differential equation 

where q ( t )  E R", u(t) E Rm, w(t) E Rm, and y(t) E Rm are partial state, input, 

disturbance, and output, respectively. The state-variable realization of the second-order 

vector differential equation in (2) in a block companion form is given by 

where 

A* = [ 0 

O I = B E ,  AB = = BF, -aAz - A A ~  



with E = [-B;'AA~, -B;'AA~], F = B;'AB~, and G = B;' Dl assuming det(B1) # 0. 

Obviously, the system in (3) satisfies the matching  condition^ (i-iii) provided that \IF(( < 1 

or 2 1 + ~ + F ~ > 0 .  

Remark 1. In general, if the uncertain linear system in (1) satisfies the matching con- 

ditions (i-iii), the matrices E, F, and G can be obtained from the given AA, AB, and 

D, respectively, using a technique based on the singular value decomposition (SVD) (see 

Appendix). 

3. Guaranteed Disturbance-Attenuation Robust-Stabilizing Controllers 

with Optimal Performance for Matched Systems 

Consider the following matched uncertain linear system: 

Suppose that the only information about the uncertainty matrices in (4) is that their 

matrix norms are bounded by 

IlEll I a and IIFJJ 5 p < I. ( 5 )  

The following theorem guarantees that a disturbance-attenuation robust-stabilizing con- 
1 

troller (with optimal performance if 11 Fll < 10 < 1) exists for the matched uncertain linear 
2 

system in (4) having the constraints in ( 5 ) .  

Theorem 1. Consider the matched uncertain linear system in (4)  with the norm-bounded 

uncertainty matrices described in (5). Let 5 > 0 be any disturbance-attenuation 

constant and Q E RnXn any given symmetric positive-definite matrix. Select any positive 
1 - P  (1 - ,B - al  a)6 

constants a1 and cl  satisfying cl t (0, T) and E Z  E (O, ) and let 
..;ax (GI 

P E Rnxn be the symmetric positive-definite solution of the following Riccati equation: 



Then, a disturbance-attenuation robust-stabilizing control law with the attenuation con- 
1 

stant S is given by u ( t )  = K z ( t ) ,  where K = - ~ B ~ P  with 2 -. That is, the closed-loop 
2 

system matrix A, = A + BE + (B + BF)K is asymptotically stable and the H,-norm 

of the closed-loop transfer functon matrix H ( s )  = C [ s I  - A,]-'D (here, D = BG) is less 

than or equal to the d for all admissible uncertainty matrices E and F in ( 5 ) ;  Furthermore, 
1 1 - P  

if IlFll 5 /3 < -, then the state-feedback control law ~ ( t )  = - y ~ T ~ z ( t )  with y _> - 
2 1 - 20 

is also optimal with respect to a certain quadratic performance index. 

Proof. To show the robust stabilization, we define 

Then 

Q, = - A ~ P  - P A  - E ~ B ~ P  - P B E  + yPB(2I + F~ + F ) B ~ P .  ( 7 b )  

From (6), it follows that 

1 + aIapBBTp + 21 - E T B T p  - PBE + ~ P B G G ~ B ~ P  + -cTc + Q 
E l  6 €2  6 

Hence 

1 1 
Q. 2 % P D D ~ P +  -cTc+Q > 0 for IlFll S P  < 1 and y > - (7d) 

€2 6 2 

or 
1 1  

Q, > ? P D D ~ P  + - C ~ C  > 0 for IIFII 5 P < 1 and y 2 -. 
~a 6 2 

( 7 4  

Thus, based on Lyapunov stability theory [I], A, is asymptotically stable for 1 1  F J J  5 13 < 1  
l 

and 7 2 -. 
2 

To show the disturbance attenuation, we utilize the equality in (7a) and the inequality 

in (7e) as follows: 



for all w € 72. Now, we define + ( jw)  ( j w I  - A,)-' ,  and premultiply D T + T ( - j ~ )  and 

postmultiply 4 ( j w ) D  to the inequality in (8a) to obtain 

Then, we complete a square term as follows: 

Thus, from (8b )  and (8c) we obtain 

Hence, ( I H ( j w ) ( (  5 6 for all w E R. 
* 1 

To show the robust performance, we let A = A + BE,  3 I= B + BF, and R = - I ,  
Y 

where R is an input weighting matrix of a quadratic performance index. From ('i'b) and 

(7c), we have the following Riccati equation: 

1 1 - P  
Therefore, if 1 1  F(I 5 P < -, then Q > 0 for y 2 -- , where Q is a state weighting 

2 1 - 2p 
matrix of a quadratic performance index. That is, the state-feedback control law u ( t )  = 

. . 

- - ~ B ~ P z ( ~ )  for y 2 - - is optimal with respect to the quadratic index 
1 - 2p 

Remark 2. The Riccati equation in (6) is constructed to acconnt for the uncertain linear 

system in (4) with the uncertainty matrices in (5) and the disturbance attenuation 6. If 

there is no system uncertainty (i.e., a = 0 and 0 = 0) and the disturbance attenuation is 

not required (i.e., 6 -+ oo), the augmented Riccati equation in (6)  reduces to an ordinary 

Riccati equation which arises in the linear quadratic regulator problem [I]. We assume 

Q > 0 to facilitate the proof; however, if ( A , C )  is observablle, this assumption can be 

relaxed to Q 2 0. 



Corollary 1. Consider the matched uncertain linear system in (4) with the norm-bounded 

uncertainty matrices described in (5). Let 6 > 0 be any given disturbance-attenuation 

constant, Q E RnX" any given symmetric positive-definite matrix, and h 3 0 a prescribed 

degree of stability [I]. Select any positive constants el and ez satisfying €1 E (0, y) 
(1 - p - .zla)6 

and r l  E (0, 
(GI 

) and let P t REX" be the symmetric positive-definite solution 
rmax 

of the following Riccati equation: 

Then, a disturbance-attenuation robust-stabilizing control law with the attenuation con- 
1 

stant 6 is given by u( t )  = K x ( t ) ,  where K = - 7 ~ T ~  with 7 2 -. Furthermore, the 
2 

closed-loop system matrix A, = A + BE + (B + B F ) K  has a prescribed degree of stability 

h [I] for ail admissible uncertainty matrices E and F in (5). rn 

Now we consider the matched uncertain linear system in (4) with structured uncer- 

tainty matrices E E RmX" and F E Rmxm described by 

k 

E = C eiEi with 5 E;,  
i=l  

and 
I 

F = f i ~ i  with 1 f i 1  5 fi, 
i= 1 

respectively, where ei and f i  are uncertain parameters, and E; and F; are known constant 

matrices with each matrix may having rank greater than one. Applying the SVD in (A5) 

to the matrices Ei and Fil we can decompose each Ei and Fi as (see Appendix) 

E i=~;u :  and F i = ~ w T 1  (11~) 

where Ti, U;, V,,  and Wi are weighted unitary matrices ~vith appropriate dimensions. 

To derive the disturbance-attenuation robust-stabilizing controllers for the matched 

system in (4) with the structured uncertainty matrices described in (11), we define sym- 

metric positive-semidefinite matrices T E Rmxm, U E Rnxn, and V E Rmxm as follows: 



with the matrices Ti, U i ,  c, and Wi as in (11). It can be shown that 2V + F  + FT _> 0. 

Also, from the matching condition (ii), we require 2I+ F + F~ > 0. As a result, we assume 

that 

I - v > o .  ( 1 2 4  

The following theorem guarantees that a disturbance-attenuation robust-stabilizing con- 

troller with optimal performance exists for the matched uncertain linear system in (4) with 

the structured uncertainty matrices in (1 1). 

Theorem 2. Consider the matched uncertain linear system in (4) with the structured un- 

certainty matrices described by (11). Let 6 > 0 be any given disturbance-attenuation con- 

stant and Q E RnXn any given symmetric positive-definite matrix. Select any positive con- 

stants ~1 and e~ satisfying €1 E and c2 E (0, - (1 - - u ~ ~ x ( V )  gmax ( T ) ) b  
dPX(G)  

and let P E Rnxn be the symmetric ~ositive-definite solution of the following Riccati equa- 

tion: 

1 1 
A ~ P + P A - P B  I - V - ~ ~ T - ~ G G T ] B ~ P + - I I + - - C T C + Q = O ,  6 (13) 

E l  6 2  6 
where the matrices T, U, and V are defined in ( 1 2 ) .  Then, a disturbance-attenuation 

robust-stabilizing control law with the attenuation constant 6 is given by u( t )  .= I C x ( t ) ,  
1 1 .  

where K = - ? B ~ P  with 7 > -. Furthermore, if 0 5 1' < -1, then the state-feedback 
2 2 - - 

control law u( t )  = - ? B T P x ( t )  with y 2 - umin(V) is also optimal with respect to a 
1 - 2urnax (1') 

certain quadratic performance index. 

Proof. Define Q, as in (7a) .  From (13)) it follows that 

Q. =PB [ ( 2 ~  - 1)I + V + Y ( F ~  + F)] B ~ P  
1  

S 
T ~ + ~  + a l ~ ~ ~ ~ T ~  + -U - E ~ B ~ P  - PBE + 'PBGG'BTP + -C 

El € 2 6  

S' ince . 

1 

2 V  + PT + F = C [J(V,yT + tvitvT) + f i ( l<~V?  + +V~I / ;~ ) ]  
i= 1 

1 



It follows that 

1 1 
Hence, Q. > ~ P D D ' P  + - C ~ C  + Q > 0 for I - 1,' > 0 and y > -. Thus, based on 

6 ~ 2 s  2 
1 

Lyapunov stability theory [I], A, is asymptotically stable for I - V > 0 and y 2 -. , 

2 
1 

The proofs for disturbance attenuation and the optirnality condition when 0 5 V < :I 
2 

are similar to those in Theorem 1 and hence omitted. I 

4. Disturbance-Attenuation Robust-Stabilizing Controllers 

for Mismatched Systems 

Consider the following mismatched uncertain linear system described by 

Suppose that the only information about the uncertaint,~ matrices a A  E Rnxn a,nd AB E 

Rnxm in (14) is that the matrix norms are bounded by 

The following theorem will be utilized to find a disturbance-attenuation robust-st abilizing 

controller for the mismatched uncertain system in (14) with the constraints in (15). 



Theorem 3. Consider the mismatched uncertain system in (14) with the norm-bounded 

uncertainty matrices described in (15). Let 6 > 0 be any given disturbance-attenuation 

constant and Q E Rnxn any given symmetric positive-definite matrix. Suppose that there 

exist any positive constants ~1 > 0, €2 E , and a3 > 0, such that the Riccati equation 

has a symmetric positive-definite solution P E RnXn. Then, a disturbance-attenuation 

robust-stabilizing control law with the attenuation constant 6 is given by u( t )  = K x ( t ) ,  

where K = -r B ~ P  with y satisfying either 

That is, the closed-loop system matrix A, = A + ad + ( B  + aB)K is asymptotically stable 

and the H,-norm of the closed-loop transfer functon matrix H ( R )  = C [ d  - A,]-'D is less 

than or equal to the 6 for all admissible uncertainty matrices AA and AB in (15). 

Proof. Suppose that the Riccati equation in (16) has a symmetric positive-definite solution 

P. Define Q, as in (7a).  From (l6), it follows that 

Since 

and 



we obtain the following inequality: 

If y satisfies either inequality in (17)) which is equivalent to satisfying the inequality 

1 
then, Qc > ~ P D D ~ P  + -cTc + Q > 0. Thus, based on Lyapunov stability theory [I], 

6 €3 6 
the obtained controller u( t )  stabilizes the mismatched system in (14) with the constraints 

in (15). 

The proof for 11 H 11-  5 S is similar to that in Theorem 1 and hence omitted. I 

Remark 3. The parameter a2 in (16) is restricted to be in the range of 

the term (1 - y) in (16) is greater than zero. I 

Now we consider the uncertain linear system in (14) with structured uncertainty ma- 

trices a A  E RnXn and aB E 7Znxni described by 

AA = C a i ~ i  with lail 5 i i i ,  (18a) 
i= 1 

and 

respectively, where a;- and bi are uncertain parameters, and A; and Bi are known constant 

matrices with each matrix may having rank greater than one. Applying the SVD in (A5) 

to Ai and Bi, we can decompose each Ai and B; as (see Appendix) 

A ~ = T ~ u T  and B~=I.;T/V?,  (lBc) 

where Ti, U;, V;, and Wi are weighted unitary matrices tt~ith appropriate dimensions. , 

To derive the disturbance-at tenuation robust-stabilizing controllers for the system 

in (14) with the structured uncertainty matrices described by (18), we define symmetric 



positive-semidefinite matrices T E Rnxn, U E Rnxn,  V E RnX", and W E Rmxm as 

follows: 
k 

with the matrices Ti,  U i ,  q, and Wi as in ( l a ) ,  The fol10,wing theorem will be utilized to 

find a disturbance-attenuation robust-stabilizing controller for the. mismatched uncertain 

system in (14) having the constraints in (28). 

Theorem 4. Consider the misrnat ched uncertain linear system in (14) with the structured 

uncertainty matrices described in (18). Let S > 0 be any give11 disturbance-attenuation 

constant and Q E Rnxn any given symmetric positive-definite matrix. Suppose that there 

exist any positive constants €1 > 0, €2 E ) , and ES :> 0, such that the Riccati 

equation 

has a symmetric positive-definite solution P E RnX'", where T, U,  V, and W are defined in 

(19). Then, a disturbance-attenuation robust-stabilizing control law with the attenuation 

constant S is given by u( t )  = K x ( t ) ,  where K = - - ~ B ~ P  with 7 satisfying either 

Proof. Suppose that the Riccati equation in (20) has a symmetric positive-definite solution 

P. Define Q, as in Theorem 1. From (ZO), it follows that 

Since- 

1 
4 y 2 ~ z ~ ~ ~ T  f -V + ~ B A B ~  + yaBBT 

€2 



and 

1 
E ~ P T P  + -U - ~ A ~ P  - P a A  

€1  ' 

we obtain the following inequality: 

If y satisfies either inequality in (Zl), which is equivalent to satisfying the inequality 

1 
then, Q. 2 ~ P D D T P  + - C ~ C  + Q > 0. Thus, based on Lyapunov stability theory [I], 

6 e3 6 
the obtained controller u( t )  stabilizes the mismatched system in (14) with the constraints 

in (18). 

The proof for disturbance attenuation is similar to that in Theorem 1 and hence 

omitted. rn 

Rernark 4. The introduction of tuning parameters, E I ,  E Z ,  and e3 in (16) and (20), 

makes the proposed approach more flexible in obtaining disturbance-attenuation robust- 

stabilizing controllers. For instance, assuming that ( A ,  C) is observable, the following 

Riccati equation 

which is the standard Riccati equation for H ,  control problem in [3] (i.e., if there exists 
1 

a P > 0 satisfying (22), then u( t )  = - - B ~ P z ( ~ )  is the desired disturbance-attcnua.tion 
2 

controller), corresponds to a special case of (16) or (20.) (when AA = 0 and AB = 0)- with 
1 

E Q  = - and Q = 0. Also, it should be noted that the inequality in (21) gives an explicit 
6 

bound for which the control gain is allowed to vary without affecting robust stability and 

disturbance attenuation of the closed-loop system. R 



5. - Illustrative Examples 

Example 1. Consider a version of the pitch-axis model for the AFTI/F-16 flying at 3000 

ft. and Mach 0.6 [5,12,14]. The equations of motion are represented in the state-space 

form as 

where the nominal system are described by 

and the structured uncertainty matrices are described by 

with (al( 5 0.7, la2( 5 35, (as1 5 0.7, )ar( 5 1.05, (bll < 2, Ibal 5 0.2, ( b 3 (  5 0.02, and 

(b4) 1 0.03. 

Note that this system is matched and the structured uncertainty matrices can be 

expressed as AA = BE and aB = BF, where 

and 
-0.0618bl + 0.3907b3 -0.0618h2 + 0.390764 

F =  [ 
0.0420b1 - 4.2657b3 0.0420h2 - 4.2657b4 1 ' 

and the disturbance matrix can be written as D = B G  with 



The eigenvalues* of A are -7.65, 0, 5.44 and the nominal system is unstable. To find a 

disturbance-attenuation robust-stabilizing control law for this matched uncertain system, 

we determine T,  U, and V as in (12) and obtain ' 

and 

v =  [ 0.17472 -0.04797 
-0.04797 0.20393 ' I 

Set the disturbance-attenuation constant 6 = 1 and choose Q = I, = 0.04 E (0 ,0 .086) ,  

and E Z  = 0.01 E (0,0.022). The Riccati equation in (13) has a symmetric positive-definite 

solution 

Then, from Theorem 2, a disturbance-attenuation robust-stabilizing control law with 6 = 1 

can be constructed as u(t)  = K x ( t ) ,  where 

1 
with y  > 3 .  Furthermore, the state-feedback control law u ( t )  = - y B T p z ( t )  with 

4 

1 - ~ m i n  ( V )  
Y 2 = 1.652 is optimal with respect to a certain quadratic performance 
. - 1 - 2cmax(V) 
index. 

To guarantee that the closed-loop system has a prescribed degree of stability h = I, 

we set 6, Q, el ,  €2 as before and replace A by A + I to solve the Riccati equation- in 

(13) for P. Then, a disturbance-attenuation robust-stabilizing control law with 6 = 1, 

which guarantees that the state vector decays no slower than e - t ,  can b'e constructed as 

u( t )  = K x ( t ) ,  where 

with 2 l, 
2 

When the requirement of disturbance attenuation is relaxed, i.e. S + w, a robust 

stabilizing control law u( t )  = K x ( t )  = - ~ B ~ P x ( ~ )  for the matched system is determined 



by solving the Riccati equation in (13) for P with Q = I and E I  = 0.04 as before. The 

feedback gain is given by 

5.6870 6.6475 10.092 I T K=--yB P = y  
-0.1324 0.7230 3.2596 

1 
with 7 2 -. This control law is of the same order of magnitude as the control laws 

2 
obtained in [5,12], for the same example. 

Example 2. The dynamics of a helicopter in a vertical plane for an airspeed range of 

60-170 knots are given in [8,12]. There are four state variables - XI = horizontal velocity 

(knotlsec), = vertical velocity (knotlsec), xg = pitch rate (deg/sec), and 2 4  = pitch 

angle (deg) - and two control variables - ul = collective pitch control and u2 = lon- 

gitudinal cy.clic pitch control. In the airspeed range of 60 knots to 170 knots, significant 

changes occur only in element ass, a 3 4 ,  and b z l .  For this range of operating conditions, 

-0.0366 0.0271 0.0188 -0.4555 0.4422 0.1761 

A =  [ 0.0482 -1.01 0.0024 -4.0208 3.0447 -7.5922 
0.1002 0.2855 -0.707 

0 0 1 0 

with lrsal 5 0.2192, 1 ~ ~ ~ 1  ( 1.2031, and Isal( 5 2.0673. Define T, U, V, and W as in 

(19) and obtain 

Set the disturbance-attenuation constant 5 = 0.5 and choose Q == I ,  = 1, €2  = 0.25 and 

€3 = 0.25, the Riccati equation in (20) has a symmetric positive-definite solution 



Then, from Theorem 4, a disturbance-attenuation robust-stabilizing controller can be con- 

structed as u(t) = Ko(t)  = -?B*Px(~), where 

1 1 _ - -  1 
with - 1.2093 > 7 ? -. 

max(vi) 2 2 
To compare bur results with that in [3], we let AA = O and AB = O (i.e. T = 0, U = 0, 

V = 0, and W = O), and set the disturbance-attenuation constant 6 = 0.1. The Riccati 
1 

equation in (22) which is now identical to (20) with Q = 0 and es = - = 10 does not have 
6 

a symmetric positive-definite solution; however, with Q = 0 and E J  = 0.25, the Riccati 

equation in (20) has a symmetric positive-definite solution, and the desired state-feedback 

control gain is given by 

-0.0033 -2.1201 0.2444 

0.4382 I 1 
for 7 2 - .  

0.0063 5.8232 0.0755 -0.3804 2 

Thus, the developed method is rnore.flexible than that of [3]. 

6. Conclusion 

Based on the LQR theory and Lyapunov stability theory, new disturbance-attenuation 

robust-stabilizing controllers have been developed for matched and/or mismatched uncer- 

tain linear systems. It has been shown that dynamic systems, described by second-order 

vector differential equations, often satisfy the matching conditions and that disturbance- 
1 

attenuation robust-stabilizing controllers (with optimal performance if ll~Bll < -) always 
2 

exist for matched uncertain linear systems which contain structured or norm-bounded 

uncertainty matrices. For mismatched uncertain linear systems , two theorems have 

been developed for finding disturbance-attenuation robust-stabilizing controllers. These 

disturbance-attenuation robust-gtabiliring control laws can be easily constructed from the 

symmetric positive-definite solution of the augmented ~ i c c a t i  equation. Also, the proposed 

approach is more flexible than some existing methods in the sense that additional tuning 

parameters (such as e, 7, and h etc.) have been introduced in the derivations to achieve 

robust stabilization, robust performance, and disturbance attenuation for uncertain linear 

systems. Two practical examples have been presented to illustrate the results. 



Appendix 

Lemma A.l (Singular value decomposition [13].) Let Ad E R n X m  be any real matrix. 
T Then there exist unitary matrices Un = [ u l , u a 7 . .  . ,u,] E Rnxn (u; u j  = and Vm = 

m x m  T [v l ,  v ~ , .  . . v,] E 72 (vi ~j = S ; , j )  such that 

where C E Rnxm is defined as 

where k < rnin(n, m) is the rank of the mat~ix  A4 and ul , ~ 2 , .  . . , uk are the nonzero 

singular values of &I. Furthermore, the matrix hf can be written as 

where Uk = [ul,uz ,..., ug] E R~~~ ( u T u ~  = I) and Vk := [vl,va, . . .  , ak ]  E R~~~ 

( V T V ~  = I ) .  

Consider the following matched uncertain system 

By utilizing the singular-value decomposition technique, the n(,minal input matrix B with 

full rank m can be decomposed as 

where Urn E R n x m 7  Cm E R m x m ,  and V, E Rmxm,  are defined as in Lemma A.1.  It is 

easy to see that 

and 



Hence, if the uncertain system satisfies the matching conditons (i-iii), then we can deter- 

mine E, F, and G from AA, A B, and D by 

E = T , a A ,  F=T,aB, and G=T,D, ( A 4 4  

where 

T, = v,E,'u~. 

Consider a real n x m matrix ibl of rank k. Immediately from Lemma 8.1, the matrix 

&I can be decomposed as the product of two rank-k matrices as follows: 

with 

1 / 2  n / f U = ~ k E : ' 2  and h f v = l r k E k  , (A5b) 

where Uk E 'Rnx k, Ek E 721Gx I G ,  and Vk E RmX" are defined as in Lemma A.1. 
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MINIMAX LINEAR SPLINES 
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ABSTRACT. An algorithm i s  derived fo r  obtaining a mesh that minimizes the 
maximum local interpolatory error for  a l inear  spline, where the error i s  
measured i n  any classical  Banach norm. This algorithm i s  based on the standard 
method of approximate error equidistr ibut ion advocated by C. de Boor. 

INTRODUCTION. I n  order t o  enable an industr ia l  machine with pr imi t ive com- 
putational a b i l i t y  t o  use complicated o r  d i f f i c u l t  t o  compute functional rela- 
tionships repeatedly. e f f i c ien t ly ,  and accurately, i t  i s  necessary t o  supply the 
machine with these functional relationships as sets o f  data i n  tabular form. It 
i s  assumed that the machine deal wi th  continuous. piecewise l inear functions 
( l inear splines). A graphics tube i s  a good example. Such a tube can draw only 
s t ra ight  l ines, but drawing many short, connected l i n e  segments can represent an 
arb i t rary  curve well. I n  order t o  represent these functions most accurately, a 
nonuniform mesh must be used. Finding such a mesh i s ,  i n  principle, a very d i f -  
f i c u l t  nonlinear optimization problem, but C. de Boor (1-31 advocated a general 
.athod by which the mesh can be found quickly, easi ly.  robustly (and approxi- 
mately) without any recourse t o  optimization methods! We present herein a 
robust addit ion t o  de Boor's standard method which improves i t s  accuracy without 
increasing the essential complexity o f  h i s  algorithm. 

INTERPOLATORY ERROR. Let 1 be the l inear  interpolant of  function f on a 
subinterval of  length h. The error i s  given by 

Expand e i n  a Taylor series around the midpoint (p) of the subinterval 

Applying the two boundary conditions 

ul t imately y ields 



Taking the f i r s t  two terms of  each sum 

Le t t ing  

one has 

where 

and 

INTERPOLATORY ERROR NORM. The l o c a l  L" norm o f  the e r ro r  on a subinterval 
o f  length h i s  defined by 

where 1 4 n < a and n  i s  an integer .  for n r m, we have the maximum error.  
NOW, 



but 

So if we let h be sufficiently small so that 1 S 1 < 1 on (-1,1), we have 

since only the even terms o f  (1+S)n contribute t o  the integral, we have 

where Ev( l+S)n  denotes the even terms of (1+S)". 

Hence, 

Letting 

we therefore have 

Using integration-by-parts on Inwi and solving the resulting recursion ulti- 
mately yields 



from which we conclude that  

and 

Hence, 

2 n 
= ----.- 

2 (n+l )  * (n!  ) '  (I+nh' (------ n-1 
(zn+lJT- Zn+3 '2 + s i ~ f i ; ~ ~  a; + O(hA 1 

and 

n n 2"+l(n!)2 
!elln, i f  :!!!!-L-?--------- (l+nh2(------ 2 (n+2) a2 + ------- 

2n(2n+l) ! 
"" a f )  + o ( h A ) )  2 (2n*3) 

0 r 

Ilell,,h = k ( ~"(JA) I h 2+l/n(l+h~ (21??21 Zn+3 8 2  + 2 7 2 3 3 ~  n- 1 a;) + O(h4) )  

where 

1 (n!)z ) l / n  k = - (------- 
2 (2n+l ) !  

Using S t i r l i n g ' s  approximation t o  the f a c t o r i a l ,  i t  i s  easy t o  show that  

1 lim k = - 
n-m 8 

Recalling that 

P 1 P2 
a 1  = --- 2.3 and a2 = Z Z ; ~  

we f i n a l l y  have 

as h-0, where 



and 

NORM OF ARBITRARY FUNCTION. The local L~ norm of arb i t ra ry  function I$ over 
a subinterval o f  length h i s  defined as 

where p > 0,  finite and real. In this context, we allow p < 1 even though 
Minkowski's triangle inequal i ty holds only for p 3 1. 

Expand 4 i n  a Taylor series around the midpoint of the subinterval 

where 

Now, 

but 

where 

and 

Hence, letting h be sufficiently small so that ) S 1 < 1 on (-1,1), we have 



but 

s = a l t  + a2t2  + a3t3  + O(h4) 
, hence 

We therefore have 

STANDARD APPROXIMATION TO Yell, h. Reca 1 1 i ng tha t  

he 
h - l / P ~ i f ~ ~ ~ ~ , ~  = I ftl(p). I ( I  + il(p2 + ( P - ~ ) p i )  + 0 ( h 4 ) )  

and 

we mult iply the f i r s t  equation by kh "'/" and subtract from the second, gett ing 

Ileiln,h = kh 2+l/n-1/plif,, ,I p,h 

n I f  we now l e t  p = ---- 2n+lt  
we have 

Ilelln,h = kllf111in/(2n+l) ,h 

1 + kh4'1/n ( ffl ( p )  1 (ii ( -  Bi$g p2 + iZn-- ---- - 

i = kllf"Wp,h + kh4*lin ) f W ( p )  a p 2  + b p i )  + O(h2) )  



For n = 1 ,2 ,  and cot respectively, we have 

STANDARD ERROR EQUIDISTRIBUTION FOR ANY BANACH NORM. I n  t h i s  section, we 
j u s t i f y  the standard method o f  error equidistribution with respect t o  any Banach 
norm. The global L" norm o f  the error over interval ( a , b )  i s  

Hence, for  a mesh a = xl < x p  c ... c XN = b 

Let single bars around the error denote the standard approximation to  the 
error norm and analogously define 

but 

where 

Hence, l e t t i n g  

we have 

We w i l l  refer t o  the integrals Ip,h as the standard or  de Boor integrals.  



I t  fol lows t r i v i a l l y ,  using Le ibn i t z ' s  ru le ,  that  

implies tha t  

lp,hi-l = I p , h i  I c i c N  

Hence, the condi t ion I p ,h  = constant determines the mesh which minimizes the 
standard global approximation t o  Hell,. 

For a l i near  sp l ine approximation t o  f", i t  i s  a f a i r l y  simple (see 
COMPUTATION) matter t o  f i n d  the mesh f o r  which the de Boor in tegra ls  are 
constant. 

CONVERGENCE OF STANDARD METHOD. Recall tha t  

Le t t ing  

we have the fo l lowing one term approximation t o  the di f ference between llelln,h 
and 14 n,h' 

but 

Therefore, we also have 

but a 1 so 

hence, 



I n  addition, f o r  the correct mesh - 

hence, 

and therefore, 

1 This t e l l s  us that the re la t i ve  difference between Helln,h and ) e ) n,h i s  0(--) 
as N-, which means that the standard method works better and better N 

(llelln,h w i l l  be more nearly constant) as N gets larger and larger. This i s  a11 
true, however, with the proviso that 

i s  bounded throughout the region o f  interest.  I t  stands t o  reason, therefore, 
that the standard method w i l l  perform worst where f "  i s  not bounded away from 
zero. 

IMPROVED APPROXIMATION TO Halln h. Recall that 

and 

Mu l t i p l y ing  h by r i n  the second equation, we have 

Mult ip ly ing th i s  equation by khQ gives us 

Now, i n  order t o  make t h i s  equation look as much l i k e  the very f i r s t  one as 
possible, we set 



and 

Solving for  r, q, and Q, we have 

and 

A simple subtract ion then gives us an improved approximation t o  Yell n,h 

where before, we had 

I t  must be mentioned however, tha t  although t h i s  improved approximation i s  
asymptotical ly more e f f i c i e n t ,  no such approximation can be uniformly superior 
i n  a l l  cases. Bearing t h i s  i n  mind, we dispense w i th  approximations on a l l  
subintervals not having f "  bounded away from zero and instead use the exact 
e r ro r  

x t  x -x i  
e i  ( x )  = I I fw(u)dudt  - ------- I f"(u)dudt 

X i  x i  x i + l - x i  rirl x i  X i  

COMPUTATION. I n  actual computation, we assume the existence o f  a piecewise 
l i near  approximation t o  1 f" 1 .  The mesh over which t h i s  funct ion is defined i s  
re fer red t o  as the "o r ig ina l "  mesh. In order t o  deal w i th  the standard and 
improved asymptotic in tegra l  approximations t o  the loca l  e r ro r  norm, we w i l l  
need t o  deal w i t h  i n tegra ls  of the form 

where X i s  a nonnegative l i near  funct ion w i th  slope s 

wi th  

A ( t )  2 0 f o r  c 4 t $ c + a 

and where m and n are a r b i t r a r y  pos i t i ve  integers. 



In the following, let 

a = h ( c )  l/n 

and 

First, we need to compute L as a function of B 

where 

6 = ( ~ ( c )  + s t )  1 /n 

Second, we need to compute P as a function o f  L 

where 

A and B are therefore inverse functions, i.e., 

A(B(x)) = x = B(A(x)) 

A q l = B  and 0-1 = A  

Now let values o f  u denote the original mesh and let g be the piecewise.linear 
interpolant to the (ui ,I f i" 1 ) data. 

Define the integral 

= G ( u ~ )  + L 

where h = gi, c = Ui, and P = X-~ i .  



Hence, 

G(x) = G(uj)  + A(x-uj)  

e x p l i c i t l y  defines G f o r  a l l  x i n  the domain o f  in terest .  

I n  order t o  get the standard mesh, we w i l l  also have t o  compute the inverse 
o f  G (only for  m/n = p ) .  

Hence, 

but if G(x) = y, then x = G'l(y). Therefore, 

f o r  

and provided 

Define 

where x i s  the standard o r  improved mesh, obtained by prescr ib ing values f o r  the 
1's. The standard method prescribes 

For the improved mesh, the 1 ' s  w i l l  vary, but the mesh i s  s t i l l  obtained i n  the 
standard way. Since 

we have immediately tha t  

X i + l  = G- l (G(xi)  + Ii) i = 1 , 2 ,  ..., N-2 

ALGORITHM. Let * denote a standard or improved mesh and * denote the suc- 
ceeding improved mesh. We have seen that  the main contr ibutor t o  the r a t i o s  
Ilelln,h**/llelln,hR and ( e ( n,hf*/l e I i s  



We therefore have the approximate asymptotic r e l a t i on  

l e l n , h n  ---- UellnLh** --- 
Hen,, h* 

But we would l i k e  ~ ~ e ~ ~ n , h *  t o  be constant, hence we have the p ropor t iona l i t y  

We calculate the 1 ' s  accordingly and mu l t ip l y  them by the appropriate constant 
t o  get 

* The quant i t ies  Uelln,h. are computed e i ther  from the improved asymptotic 
approximation o r  exacqly ( r e l a t i v e  t o  the o r i g i na l  data) depending on whether or  
not f "  i s  bounded away- from zero on the subinterval i n  question. It i s  impor- 
tan t  t o  note that  t h i s  approximate r e l a t i o n  between the * and * meshes can lead 
t o  exact convergence ( rap id ly )  t o  the minimax mesh. I f  the * mesh is the 
minimax mesh (llelIn,-,* = constant), then the de Boor in tegra ls  ( Ip,h)  on the *J' 
mesh w i l l  be no d i f f e ren t  from those on the * mesh. 

The p rac t i ca l  convergence propert ies o f  t h i s  algori thm are as follows. I f  
f" i s  well bounded away from zero, the standard de Boor method gives impeccable 
resu l t s  without any i te ra t ion .  I f  f "  i s  not bounded away from zero, convergence 
t o  a v i r t u a l l y  perfect  minimax mesh can eas i l y  occur i n  only two i te ra t ions .  A 
few i te ra t ions  may be needed i n  the presence o f  mu l t ip le  i n f l e c t i o n  points. 

I n  any case, even the very f i r s t  i t e r a t i o n  improves the mesh markedly. 
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